"Fully connected"(全连接)是一种神经网络层的类型,也被称为密集连接层(Dense layer)或线性层(Linear layer)。在全连接层中,每个神经元与上一层的所有神经元都有连接。
在全连接层中,每个输入神经元都与输出层的每个神经元相连,形成一个完全连接的结构。这意味着输入数据的每个特征都与输出层的每个神经元之间都有权重连接,并通过这些连接进行信息传递和计算。
全连接层的计算过程可以表示为 Y = X * W + b,其中 X 是输入数据的向量,W 是权重矩阵,b 是偏置向量,Y 是输出数据的向量。每个输出神经元的计算是基于输入数据的每个特征与相应的权重进行线性组合,并加上偏置项。
全连接层通常用于神经网络的最后一层,将特征映射到最终的输出空间。在图像分类任务中,通常会在全连接层之前使用卷积层和池化层来提取特征,然后通过全连接层将提取的特征映射到不同类别的概率或得分。
全连接层的参数量往往较大,特别是在输入维度较高的情况下。这也是全连接层往往需要进行降维或采用其他技术(如卷积层)来减少参数数量的原因。
总之,全连接层是神经网络中的一种层类型,每个输入神经元与输出层的每个神经元都有连接,通过权重和偏置项进行线性组合,将输入数据映射到最终的输出空间。