引言:在反应器优化设计过程中,经常会遇到选择设计参数,使得设计方案既满足工艺要求,又能降低设备投资及产品成本的问题。而对于一个优化项目而言,需解决两个问题,一是根据实际问题建立合理的数学模型,二是数学模学的求解。反应器的优化设计中,需要对模型进行求导运算,若问题较为复杂,求导则变得异常困难。利用MATLAB中的fminsearch命令,可以对问题进行无约束优化,使得优化问题大大简化。一、优化模型的变形及fminsearch命令的调用格式(一)目标函数的变形最优化,在数学表达式上就是求得目标函数(fx)最大或最小值的决策变量,通用的优化模型可以表示为:例如求min(fx),为最优化问题的标准型;如果求max(fx),则应根据实际情况将问题转化为最优化问题的标准型,即:max(fx)=min(-(fx))。(二)MATLAB中fminsearch命令的调用格式MATLAB中的fminsearch命令基于Nelder-Mead算法,求多变量函数的最小值。其调用格式为:其中x0为被优化参数的初值,func为目标函数,p1、p2为需要额外输入的参数。fminsearch命令通过不断更新被优化参数x的值,最后得到使得目标函数取得最小值时的x值。二、具有循环操作的平推流反应器具有循环操作的平推流反应器广泛应用于均相反应,其循环比反映了物料的宏观混合程度,是反应器设计的重要参数。采用适宜的循环比可以有效地调整物料的反应器进口浓度、降低反应器体积和设备投资,如图1所示。(一)具有循环操作的平推流反应器的基础算式在平推流反应器进口处对组分A进行质量恒算:V2CAf+V0CA0=V1CA1(1)V1=V2V0V2=V0得CA1=CA0+CAf1+(2)在平推流反应器内部对组分A进行质量恒算:VRV1=CA1CAf乙(d-CrAA)(3)将(2)式代入(3)式,VRV1=CA0+CAf1+CAf乙(d-CrAA)(4)由(4)式可以看出,一定的工艺条件、确定的出口转化率的条件下,反应器的体积与循环比有关,循环比具有一个最优值,此时的反应器体积最小。(二)应用实例自催化反应A+R2R,其反应速率方程式为-rA=KCACR,在70下等温的进行反应,在此温度下k=1.512m3/kmol.h,其他数据如下:CA0=0.99kmol/m3,CR0=0.01kmol/m3,v0=10m3/h,要求反应的转化率xA=0.99,若采用带有循环操作的平推流反应器,求最佳循环比下的反应器体积。运用式(4)计算反应器的体积,将反应器体积VR作为目标函数,用fminsearch命令计算最佳的循环比。计算过程如图2所示。图1具有循环操作的平推流反应器示意图图2计算过程示意图步骤一:编写目标函数M文件functionV=objfunc(beita)globalCA0CR0kXAfCA0=0.99;CR0=0.01;k=1.512;XAf=0.99;v0=10;CAf=CA0*(1-XAf);CA1=(CA0+beita*CAf)(/1+bei-ta);sol=quad(@func,CAf,CA1,[],[],beita);V=(1+beita)v0*sol;functiony=func(CA,beita)globalCA0CR0kXAfCRf=CR0+CA0*XAf;CR1=(CR0+beita*CRf)(/1+beita);CAf=CA0*(1-XAf);CA1=(CA0+beita*CAf)(/1+beita);CR=CR1+CA1-CA;rate=k*CA.*CR;y=1./rate;步骤
matlab固定床反应器,基于MATLAB在反应器优化设计中的应用
最新推荐文章于 2023-03-11 16:44:11 发布