matlab使用杂谈4-偏微分方程求解之pdede函数使用

偏微分方程

偏微分方程(Partial Differential Equation,PDE)指含有未知函数及其偏导数的方程,自变量的个数为两个或两个以上。描述自变量、未知函数及偏导数之间的关系
偏微分方程分为
1、线性偏微分方程式
2、非线性偏微分方程式

求解偏微分方程的数值方法

1、有限元法(Finite Element Method,FEM)
2、有限体积法(Finite Volume Method,FVM)
3、有限差分法(Finite Difference Method,FDM)
还有其他FFEM、XFEM、MFEM、DGFEM等方法

Matlab解偏微分方程

pdepe()函数

可求解一般的PDEs,具有较大的通用性,但指支持命令行形式调用
matlab中关于pdepe函数的用法
语法
sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan)
sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options)
[sol,tsol,sole,te,ie] = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options)

变量

参数 含义
m 与该问题的对称性相对应的参数。m 可以是平板 = 0,柱状 = 1,或球面 = 2。
pdefun 定义函数句柄
icfun 初始条件函数句柄
bcfun 边界条件函数句柄
xmesh 向量 [x0, x1, …, xn],用于指定需要针对 tspan 中每个值求数值解的点。xmesh 的元素必须满足 x0 < x1 < … < xn。xmesh 的长度必须 >= 3。
tspan 向量 [t0, t1, …, tf],用于指定需要针对 xmesh 中每个值求解的点。tspan 的元素必须满足 t0 < t1 < … < tf。tspan 的长度必须 >= 3。
options 基础 ODE 求解器的部分选项可以在 pdepe 中使用:RelTol、AbsTol、NormControl、InitialStep、MaxStep 和 Events。在大多数情况下,这些选项的默认值可提供满意解

分割线----------------------------------------------------------------------------------
:该部分涉及数学知识可不过分关注,但需要充分理解方程格式

pdepe函数主要用来结算以下格式的PDE方程
在这里插入图片描述
x与t的范围需要处于有限范围
对于 t = t0 和所有 x,解分量均满足以下格式的初始条件
在这里插入图片描述
对于所有 t 和 x = a 或 x = b,解分量满足以下形式的边界条件
在这里插入图片描述
q 的元素全部为零或都不为零(至于原因是什么,我还没有搞懂…)。请注意,边界条件以通量 f 的方式而不是 ∂u/∂x 表示。同时,在这两个系数之间,只有 p 可以依赖于 u。

分割线----------------------------------------------------------------------------------
在调用 sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan) 中:
m 与 m 对应。
xmesh(1) 和 xmesh(end) 对应 a 和 b。
tspan(1) 和 tspan(end) 对应 t0 和 tf

pdefun 计算项 c、f 和 s (公式 1)。其格式为
[c,f,s] = pdefun(x,t,u,dudx)
输入参数为标量 x 和 t,以及向量 u 和 dudx,分别接近于解 u 及其相对于 x 的偏导数
icfun 计算初始条件。其格式为

u = icfun(x)
当与参数 x 一起调用时ÿ

Matlabpdede函数用于求解偏微分方程。通过给定的边界条件和初始条件,pdede函数可以通过有限差分法或其他数值方法求解偏微分方程的数值解。具体步骤如下: 1. 定义偏微分方程的参数和方程形式:首先需要定义偏微分方程的参数,如系数、边界条件等,并将方程写成pdede函数可以接受的形式。 2. 定义网格和时间步长:通过定义x轴和t轴上的网格点,确定求解的空间和时间范围。 3. 调用pdede函数:将定义好的参数、方程形式、初始条件和边界条件作为输入参数,调用pdede函数进行求解。得到的结果是一个数值解矩阵,其中每个元素表示在对应的空间和时间点上的解值。 4. 可视化结果:通过绘制曲线或者三维图形来展示数值解的变化情况。 需要注意的是,具体的代码实现可能因为方程的形式和边界条件的不同而有所差异。因此,在使用pdede函数之前,需要根据具体的偏微分方程和问题要求进行相应的参数设置和方程形式的定义。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [matlab使用杂谈4-偏微分方程求解pdede函数使用](https://blog.csdn.net/weixin_44985601/article/details/104387551)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值