zju_1090

题目:
he Circumference of the Circle
Time Limit: Java: 2000 ms / Others: 2000 ms

Memory Limit: Java: 65536 KB / Others: 65536 KB

[显示标签]
Description

To calculate the circumference of a circle seems to be an easy task - provided you know its
diameter. But what if you don’t?

You are given the cartesian coordinates of three non-collinear points in the plane.

Your job is to calculate the circumference of the unique circle that
intersects all three points.

Input
The input file will contain one or more test cases. Each test case consists
of one line containing six real numbers x1,y1,
x2,y2,x3,y3,
representing the coordinates of the three points.
The diameter of the circle determined by the three points will never exceed
a million. Input is terminated by end of file.
Output
For each test case, print one line containing one real number telling
the circumference of the circle determined by the three points.
The circumference is to be printed accurately rounded to two decimals.
The value of pi is approximately 3.141592653589793.
Sample Input
0.0 -0.5 0.5 0.0 0.0 0.5
0.0 0.0 0.0 1.0 1.0 1.0
5.0 5.0 5.0 7.0 4.0 6.0
0.0 0.0 -1.0 7.0 7.0 7.0
50.0 50.0 50.0 70.0 40.0 60.0
0.0 0.0 10.0 0.0 20.0 1.0
0.0 -500000.0 500000.0 0.0 0.0 500000.0
Sample Output
3.14
4.44
6.28
31.42
62.83
632.24
3141592.65

题目大意:
给定不在一条直线上的3个点,问同时经过这个点的圆的周长是多少。

题解思路:
解法1:
(x - x0) * (x - x0) + (y - y0) * (y - y0) = r * r;
将三个点代入,得到r。

解法2:
cos c = (a * a + b * b - c * c) / (2 * a * b);
sin c = sqrt(1 - cos c * cos c);
2 * r = c / sin c;
r = c / 2 / sin c ;

解法3:
r = a * b * c / 2 / s;
s = sqrt(p * (p - a) * (p - b) * (p - c));
p = (a + b + c) / 2;

注意点:
1.小数点后只保留2位
AC代码:

/*
zju 1090
方法1;
cos c = (a * a + b * b - c * c) / (2 * a * b);
sin c = sqrt(1 = cos c * cos c); 
c / sin c = 2 * r;
r = c / 2 / sinc c;


方法2 
r = a * b * c / 4 / s;
s = sqrt(p * (p -a) * (p - b) * (p - c));
p = (a + b + c) / 2;

*/

#include <iostream>
#include <cstdio>
#include <cmath>

#define PI 3.141592652589793

using namespace std;

int main(void) {
	double x1, y1, x2, y2, x3, y3, r, a, b, c, s, p;
	while(scanf("%lf%lf%lf%lf%lf%lf", &x1, &y1, &x2, &y2, &x3, &y3) != EOF) {
		a = b = c = p = s = r = 0;
		a = sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
		b = sqrt((x1 - x3) * (x1 - x3) + (y1 - y3) * (y1 - y3));
		c = sqrt((x2 - x3) * (x2 - x3) + (y2 - y3) * (y2 - y3));
		p = (a + b + c) / 2;
		s = sqrt(p * (p - a) * (p - b) * (p - c));
		r = a * b * c / 4 / s;
		double fi;
		fi = 2 * r * PI; 
		printf("%.2lf\n", fi);
	}
	
	return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值