背景简介
随着技术的快速发展,数据已成为企业决策和性能提升的核心驱动力。然而,数据的伦理使用受到了模型漂移、数据处理的透明度以及个人隐私保护等挑战的严峻考验。本章内容为我们提供了在人工智能(AI)和机器学习(ML)环境中管理数据伦理的深入见解。
数据处理的透明度
透明度要求数据管理的行动和过程对公众开放,并易于检查。对于个人信息而言,数据主体有权了解数据收集、存储和使用的方式。透明度意味着数据处理活动和自动化决策必须是真正透明和可解释的。公司必须明确告知数据主体在理解风险、社会、伦理和社会影响方面的方法和意图。
公平性
在技术或法律上,不公平性被定义为基于性别、种族、宗教等受保护属性的不同群体受到差异性对待和影响。AI系统中的人类偏见有可能嵌入到数据中,因此重要的是消除数据对个体和群体的任何非故意歧视性影响。
模型漂移
模型漂移是指数据和数据变量之间关系的变化导致的数据分析模型性能退化。模型漂移主要由商业变化引起,例如并购、新产品引入、新法律和法规的出现以及进入新市场等。管理模型漂移对于确保数据洞察或预测的准确性至关重要。
个人数据隐私保护
确保数据隐私是处理数据时的一个关键伦理责任。个人可识别信息(PII)是用于识别个人的任何数据。保护PII数据非常重要,因为越来越多的组织及其客户面临身份盗窃的风险。数据掩码是保护敏感PII数据的常用技术,包括令牌化、数据混淆和噪声添加等方法。
数据敏感性
数据敏感性涉及保护由于数据的敏感性质而不应未经授权访问的数据。在数据分类方面,公司中存在的四类敏感数据包括开放数据、个人数据、保密数据和受限数据。受限数据包括可能因未授权访问而引发刑事指控、巨额法律罚款或对公司造成无法修复的损害的数据。
结论与启发
数据伦理不仅仅是技术管理问题,它还涉及组织如何适应数据和分析的不断变化的环境。从数据的收集到模型的部署,每一个环节都需要深思熟虑的伦理考量。通过实施有效的数据治理实践、与利益相关者不断沟通以及集成ModelOps和DataOps实践,可以确保数据分析模型能够适应不断变化的商业环境。总之,数据伦理是保障AI和ML在社会中良性发展的重要基石。