关于做爬虫项目的一些小杂记

关于做爬虫项目的一些小杂记–pyppeteer

1.启动参数解释(待补充)

# 'headless': False  是否以”无头”的模式运行,,即是否显示窗口,默认为 True(不显示)
# 'ignoreHTTPSErrors': True  是否忽略 Https 报错信息,默认为 False
# 'dumpio': True  防止多开导致的假死
# args常用配置
#### '--no-sandbox'  取消沙盒模式,放开权限
#### '--disable-infobars'  不显示信息栏,比如:chrome正在受到自动测试软件的控制
#### '--window-size=1920,1080' 设置窗口大小 和"--start-maximized"参数互斥
#### "--start-maximized"  窗口最大化
#### "--proxy-server=http://127.0.0.1:80"  设置代理
#### "--user-agent=Mozilla/5.0......"  设置UA
browser = await launch(
            {'headless': False, 'dumpio': True, 'autoClose': False, 
            'ignoreHTTPSErrors': True,
            'args': ['--no-sandbox', '--disable-infobars', '--window-size=1920,1080',
            ]})

2.清除特定参数(webdriver),达到绕过反爬检查,从而实现爬虫

await page.evaluateOnNewDocument('''
                () => {
                const newProto = navigator.__proto__;
                delete newProto.webdriver;
                navigator.__proto__ = newProto;
                }
            ''')

3.拖拽验证码,缺口位置确定

def get_distance(bkg,blk):
    block = cv2.imread(blk, 0)
    template = cv2.imread(bkg, 0)
    cv2.imwrite('template.jpg', template)
    cv2.imwrite('block.jpg', block)
    block = cv2.imread('block.jpg')
    block = cv2.cvtColor(block, cv2.COLOR_BGR2GRAY)
    # block = abs(255 - block)
    cv2.imwrite('block.jpg', block)
    block = cv2.imread('block.jpg')
    template = cv2.imread('template.jpg')
    result = cv2.matchTemplate(block,template,cv2.TM_CCOEFF_NORMED)
    x, y = np.unravel_index(result.argmax(), result.shape)
    print(x, y, sep='\n')
    #这里就是下图中的绿色框框
    cv2.rectangle(template, (y+20, x+20), (y + 136-25, x + 136-25), (7, 249, 151), 2)
    print('x坐标为:%d'%(y))
    return y
if __name__ == "__main__":
    # 下载图片
    urls = {"bkg.jpg": "https://necaptcha.nosdn.127.net/b016d6ff32fc4c7ca5d40d0869ecde33.jpg",
            "blg.jpg": "https://necaptcha.nosdn.127.net/3a39df3bb5e443798136534e19b8c4f1.png"}
    for i in urls.keys():
        re = requests.request("GET", urls[i])
        with open(i, 'bw') as f:
            f.write(re.content)
    # 裁剪 滑块图片
    image = cv2.imread("blg.jpg", 1)  # 读取图片 image_name应该是变量
    img = cv2.medianBlur(image, 5)  # 中值滤波,去除黑色边际中可能含有的噪声干扰
    b = cv2.threshold(img, 15, 255, cv2.THRESH_BINARY)  # 调整裁剪效果
    binary_image = b[1]  # 二值图--具有三通道
    binary_image = cv2.cvtColor(binary_image, cv2.COLOR_BGR2GRAY)
    # print(binary_image.shape)  # 改为单通道
    print(binary_image)

    x = binary_image.shape[0]
    print("高度x=", x)
    y = binary_image.shape[1]
    print("宽度y=", y)
    edges_x = []
    edges_y = []
    for i in range(x):
        for j in range(y):
            if binary_image[i][j] == 255:
                edges_x.append(i)
                edges_y.append(j)

    left = min(edges_x)  # 左边界
    right = max(edges_x)  # 右边界
    width = right - left  # 宽度
    bottom = min(edges_y)  # 底部
    top = max(edges_y)  # 顶部
    height = top - bottom  # 高度
    print(left, width, bottom, height, sep="\n")

    pre1_picture = image[left:left + width, bottom:bottom + height]
    cv2.imwrite('blg_new.jpg', pre1_picture)
    # 裁剪背景图
    image = cv2.imread("bkg.jpg", 1)
    image_new = image[left:left + width, :]
    cv2.imwrite("bkg_new.jpg", image_new)
    # 获取坐标
    distance = get_distance("bkg_new.jpg", "blg_new.jpg")
    print(distance)

4.关于破解验证码时,资源格式为(data:image/png;base64)时的解决方法

a.data:image/png;base64其实就是Data URI scheme

Data URI scheme :Data URI scheme是在RFC2397中定义的,目的是将一些小的数据,直接嵌入到网页中,从而不用再从外部文件载入,例如下面的代码

<img src="">

在上面的Data URI中,data表示取得数据的协定名称,image/png 是数据类型名称,base64 是数据的编码方法,逗号后面就是这个image/png文件base64编码后的数据。 目前,Data URI scheme支持的类型有:

data:,文本数据
data:text/plain,文本数据
data:text/html,HTML代码
data:text/html;base64,base64编码的HTML代码
data:text/css,CSS代码
data:text/css;base64,base64编码的CSS代码
data:text/javascript,Javascript代码
data:text/javascript;base64,base64编码的Javascript代码
编码的gif图片数据
编码的png图片数据
编码的jpeg图片数据
编码的icon图片数据
b. 在爬虫过程中对以上数据如何处理呢?请看下面代码
    async def get_image(self, page, path,image_name):
        # 先获取src
        src_text = await get_attribute(page, path, attr="src")
        # 截取除图片的内容 是经过base64加密的
        image_content = src_text.split("base64,")[1]
        import base64
        # 通过base64解密
        image_content_b = base64.b64decode(image_content.encode())
        # 通过二进制写入文件,即可获得目标图片
        with open(image_name, "bw") as f:
            f.write(image_content_b)
            
     async def get_attribute(page, path, attr="value"):
    """
    获取指定元素的value值
    :param page:
    :param path:
    :param attr: 默认value 默认获取value属性值
    :return:
    """
    for i in range(1, global_wait_time):
        try:
            value = await page.querySelectorEval(path, "el => el.getAttribute('{}')".format(attr))
            return value
        except:
            await page.waitFor(global_interval_time)
            continue
    Exception("path=[{}]的元素的value值未找到({}秒超时)".format(path, global_wait_time))

关于page.select 方法的简单说明

简单的页面,包含一个下拉筛选

<!DOCTYPE html>
<html>
<body>

<select id="select_01">
  <option value="1">Volvo</option>
  <option value="2">Saab</option>
  <option>Opel</option>
  <option value="4">41</option>
</select>

</body>
</html>
# -*- coding: utf-8 -*-
# Author:zschuan
# Date:2020/9/28 17:24
from pyppeteer import launch

async def login():
    browser = await launch(
        {'headless': False, 'dumpio': True, 'autoClose': False,
         'args': ['--no-sandbox', '--disable-infobars', '--window-size=1680,1050']})
    page = await browser.newPage()
    await page.setViewport(viewport={'width': 1680, 'height': 1050})
    # 地址该处自己的地址即可
    await page.goto(r"D:\Programmer\data\DataPython\zschuan\puppeteer_test\select.html")
    await page.waitFor("#select_01")
    # 无value属性
    await page.select("#select_01", "Opel")
    # # 有value属性
    # await page.select("#select_01", "4")

if __name__ == "__main__":
    import asyncio
    asyncio.get_event_loop().run_until_complete(login())

正常的下拉中都会有value值,此时我们可以直接通过page.select(元素value值)来实现下拉选择,但是有时候option标签中并没有value属性,此时,我么可以通过option标签之间的文本来实现下拉(例如上述实例中的【Opel】)

注:当option标签中既有value属性,又有文本信息时,此时必须先填写value属性值,直接填写文本信息,无法实现下拉选择

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值