数字仪表示数读取
方法一:基于OpenCV和LSSVM的数字仪表读数自动识别
步骤概括:
数字仪表图像预处理
①采集图像
②仪表图像倾斜校正(Canny边缘检测与Hough变换相结合的倾斜校正方法)
③图像的形体学处理(腐蚀、膨胀,简化图像数据,除去不相干结构)
④图像二值化(将图像分割为背景和目标两部分,Otsu算法)
图像特征提取
①特征分析(形状、颜色和亮度)
②定位分割(基于连通域的方法进行定位分割/ 投影法)
③数字特征提取
读数识别(模式匹配法、基于人工神经网络法、穿线法、最小二乘支持向量机(LSSVM)算法)
方法二:openCV仪表数字识别
步骤概括:
1.自动定位数字区域(需要一张有数据的图片,一张仪表关闭时没有数据的图片;仪表数字和背景的区别是数据会在短时间内变化,这样在差分二值图中未变化的背景区域就会被滤除)
2.如果是多行数据,对数据进行按行分割(投影法)
3.照片因为拍摄角度,数字可能发生倾斜,此时进行倾斜矫正(hough变换)
4.数字分隔提取,将每行数字单独分割出来一个一个识别
①腐蚀操作,去除杂点
②膨胀,保证一个数字的数码管都是相连的
③使用openCV的函数cvFindContours查找各个数字边缘
④分别建立各个轮廓的轮廓矩
⑤将每个矩形切割出来,并单独存为一个图像
指针仪表示数读取
方法一:基于深度学习的指针仪表示数识别
步骤概括:
应用深度学习的Faster-RCNN算法从摄像头采集的图像中迅速定位仪表区域,并且去除图像的干扰信息
①传统表盘提取常用算法:
Hough变换(计算量大,抗干扰能力不强,效率较低)
区域生长分隔算

本文详细介绍了两种数字仪表读数自动识别方法,包括基于OpenCV和LSSVM的识别过程,以及openCV仪表数字识别步骤。同时,还探讨了指针仪表的读数识别,提到了基于深度学习的Faster-RCNN算法以及openCV的模板匹配、k-means和直线拟合方法。
最低0.47元/天 解锁文章

441

被折叠的 条评论
为什么被折叠?



