OpenCV数字识别实战教程

部署运行你感兴趣的模型镜像

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:OpenCV是一个广泛使用的计算机视觉库,能够帮助开发者高效实现图像分析和识别任务。数字识别是计算机视觉中的关键技术,可用于车牌识别、验证码识别和银行支票读取等。本文介绍基于OpenCV的数字识别流程,包括图像预处理、轮廓检测、外接矩形获取、数字分割、模板匹配和匹配评估等步骤。通过实现这些步骤,我们可以学习如何应用这些技术,提高数字识别的准确性。此外,也可以探索使用深度学习模型进行数字识别,以进一步提高识别的准确性和鲁棒性。
基于opencv的数字识别

1. OpenCV简介

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。它由一系列 C 函数和少量 C++ 类构成,提供了丰富的图像处理与计算机视觉的算法。OpenCV 库广泛应用于学术研究和商业项目,尤其在实时应用如增强现实、立体视觉、动作识别等领域具有卓越表现。

OpenCV 拥有一个庞大的社区支持和丰富的文档资源,使得它成为IT行业不可或缺的工具之一。无论是初学者还是资深开发者,OpenCV都能提供足够的技术支持和便利性。它的模块化设计允许开发者按需选择功能模块,而无需加载整个库,从而确保了高效率和灵活性。

随着计算机视觉技术的快速发展,OpenCV不断更新以适应新的技术需求和挑战。它的最新版本不仅提供了对深度学习框架的支持,还添加了针对复杂算法的优化处理。通过掌握OpenCV,开发者可以迅速实现各类视觉应用,从简单的图像处理任务到复杂的图像识别系统。

2. 图像预处理方法

2.1 图像预处理的理论基础

2.1.1 颜色空间转换

颜色空间转换是图像处理中的基础概念,它涉及将图像从一种颜色模型转换到另一种。常见的颜色模型包括RGB、灰度和HSV等。在不同的应用场景中,颜色空间的选择对于后续图像处理步骤的效率和准确性有着显著的影响。

RGB颜色模型是最常见的颜色空间,代表了红、绿、蓝三种颜色的强度组合。然而,对于某些图像处理任务,如图像分割或特征提取,RGB颜色空间可能不是最佳选择。例如,HSV颜色空间将颜色分解为色调(Hue)、饱和度(Saturation)和亮度(Value)三个分量,它更接近人类对颜色的感知,因此在处理颜色信息时,HSV空间通常更为有效。

下面是一个OpenCV中进行颜色空间转换的代码示例:

import cv2
import numpy as np

# 读取图像
image_rgb = cv2.imread('image.png')

# 将RGB图像转换为HSV图像
image_hsv = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2HSV)

# 转换后的图像处理...

# 将HSV图像转换回RGB图像(如果需要)
image_back_to_rgb = cv2.cvtColor(image_hsv, cv2.COLOR_HSV2RGB)

在这段代码中, cv2.imread 函数用于读取图像, cv2.cvtColor 函数用于执行颜色空间的转换。此处的转换只是简单的例子,但在实际应用中,颜色空间的选择需根据具体任务来决定。

2.1.2 噪声去除与滤波

图像在获取、传输或转换过程中可能会引入噪声。噪声会干扰图像中的有用信息,降低图像质量,因此去除噪声是预处理中的重要环节。常用的滤波方法包括均值滤波、高斯滤波、中值滤波和双边滤波等。

均值滤波器通过取邻域内所有像素值的平均来减少噪声,简单且易于实现,但可能会模糊边缘。高斯滤波器是根据高斯函数的特性来确定邻域内各像素的权重,能够更有效地减少高斯噪声。中值滤波器用邻域像素值的中位数替换目标像素值,能够很好地保护边缘信息。双边滤波器则考虑了空间邻近度和像素值相似度两个因素,可以在去除噪声的同时保持边缘的清晰。

下面是一个使用OpenCV实现高斯滤波的代码示例:

# 高斯滤波函数 cv2.GaussianBlur
# 参数说明:
# - src: 输入图像
# - ksize: 高斯核大小,必须是正奇数
# - sigmaX: 沿x轴方向的高斯核标准差,如果为零则由ksize决定

image_gaussian_blur = cv2.GaussianBlur(image_rgb, (5, 5), 0)

# 处理后的图像可以用于后续步骤,例如边缘检测等。

使用高斯滤波可以有效地去除图像的高斯噪声,但需要注意的是,滤波器的核大小和标准差应根据具体图像进行调整。核越大,图像越模糊;标准差越大,去噪效果越好,但也可能过度平滑。

2.2 图像二值化与边缘检测

2.2.1 图像二值化的应用场景

图像二值化是将图像中的像素值从一个较宽的灰度范围转换为黑白两种颜色的过程。这在许多图像分析任务中非常有用,比如在文本识别、文档图像处理或者在需要将前景和背景分离的场合。

二值化可以通过一个简单的阈值操作来完成。OpenCV提供了多种阈值方法,如二值化、反二值化、截断二值化、阈值二值化以及使用OTSU算法自动计算阈值等。每种方法适用于不同的场景,例如OTSU方法能够自动计算出最佳阈值,从而适应光照变化大的环境。

下面是一个使用OTSU方法进行图像二值化的代码示例:

# 使用OTSU方法进行阈值二值化 cv2.threshold
# 参数说明:
# - src: 输入图像
# - thresh: 阈值
# - maxval: 最大值
# - type: 阈值类型

ret, image_otsu = cv2.threshold(image_gaussian_blur, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)

在实际应用中,对于有明显光照不均的图像,OTSU方法可以自动找到一个较好的阈值,从而获得更佳的二值化效果。

2.2.2 边缘检测算法概述

边缘检测是图像处理中的一个基本操作,它旨在标识图像中亮度变化显著的区域,即边缘。边缘通常对应于图像中物体的边界,因此边缘检测对于提取图像特征非常有用。

常见的边缘检测算法包括Sobel算法、Prewitt算法、Roberts算法和Canny算法等。其中,Canny算法被认为是性能最好的边缘检测算法,它具有较好的检测性能和边缘连接性。

Canny边缘检测算法包含了噪声去除、计算梯度幅值和方向、非极大值抑制和边缘连接等步骤。Canny边缘检测器通过将边缘点与其邻域进行比较,并剔除那些不满足边缘强度阈值或连接性的点来实现边缘检测。

下面是一个使用Canny边缘检测的代码示例:

# Canny边缘检测函数 cv2.Canny
# 参数说明:
# - src: 输入图像
# - thresh1: 较低阈值
# - thresh2: 较高阈值

edges = cv2.Canny(image_otsu, 50, 150)

在这个例子中, edges 将会包含检测到的边缘信息,而 thresh1 thresh2 是用于边缘连接和细化的两个阈值参数。

2.3 图像形态学操作

2.3.1 膨胀与腐蚀技术

形态学操作是基于形状的一系列图像处理技术,它们在图像的二值化图像上操作,以达到突出图像中的特定结构、填补物体内部的小孔或断点、分离粘连物体等目的。膨胀和腐蚀是形态学操作中最基本的两个过程。

膨胀操作能够使物体的边界向外扩展,对于分离物体和填补内部空洞非常有效。它通常用于消除小的空洞和缝隙,但可能会使临近物体相互连接。腐蚀操作与膨胀相反,它使物体边界向内部收缩,可以用来消除小的物体和填补物体边缘的小洞。

在OpenCV中,可以通过选择不同的结构元素来对膨胀和腐蚀的形状和大小进行定制。结构元素定义了邻域的形状,常见的结构元素包括矩形、椭圆和十字形等。

下面是一个使用OpenCV进行膨胀和腐蚀操作的代码示例:

# 膨胀函数 cv2.dilate
# 腐蚀函数 cv2.erode
# 参数说明:
# - src: 输入图像
# - kernel: 结构元素
# - iterations: 应用次数

kernel = np.ones((5, 5), np.uint8)
dilated_image = cv2.dilate(edges, kernel, iterations=1)
eroded_image = cv2.erode(dilated_image, kernel, iterations=1)

在上述代码中, dilated_image 表示膨胀后的图像,而 eroded_image 表示经过腐蚀处理的图像。

2.3.2 开运算与闭运算的原理与应用

开运算和闭运算是形态学操作中更为复杂的两种处理方法,它们结合了腐蚀和膨胀两种操作来达到特定的效果。

开运算通常用于去除小的物体,在不改变图像中物体大小的情况下移除小的对象。它的原理是先对图像进行腐蚀,然后再进行膨胀。开运算在处理噪声时非常有用,尤其是那些比物体本身小的噪声。

闭运算则是先膨胀后腐蚀的过程,它能够填平物体内部的小洞和裂缝,弥合较窄的裂缝,通常用于连接临近物体或填充物体内部的小孔。

下面是一个使用OpenCV实现开运算和闭运算的代码示例:

# 开运算函数 cv2.morphologyEx
# 闭运算函数同样使用 cv2.morphologyEx
# 参数说明:
# - src: 输入图像
# - op: 操作类型,cv2.MORPH_OPEN 用于开运算,cv2.MORPH_CLOSE 用于闭运算
# - kernel: 结构元素

opened_image = cv2.morphologyEx(edges, cv2.MORPH_OPEN, kernel)
closed_image = cv2.morphologyEx(opened_image, cv2.MORPH_CLOSE, kernel)

在上面的代码中, opened_image 表示开运算后的图像,而 closed_image 表示闭运算后的图像。

通过适当选择结构元素的形状和大小,开运算和闭运算可以在图像处理中发挥重要的作用,比如在去除噪声、连接粘连物体或者填补物体的空洞等方面。

3. 轮廓检测技术

3.1 轮廓检测的理论与方法

3.1.1 轮廓定义与特点

在图像处理中,轮廓可以被定义为像素点集,这些点构成了对象的边界,并与相邻像素的强度形成明显的对比。轮廓的检测对于理解和描述图像中的对象至关重要,因为它们揭示了物体的形状、大小和位置等关键信息。轮廓的特点包括连续性、封闭性和明确的边界区分。

轮廓检测的一个关键点在于其能够将图像从像素级别抽象到几何级别。这不仅简化了进一步的分析,而且能够更有效地提取出图像中的对象。例如,在一张包含许多不同物体的图片中,我们可以使用轮廓检测技术来分离出每个对象的轮廓,进而进行分类、测量或其他分析。

3.1.2 轮廓检测算法的选择

选择合适的轮廓检测算法对于后续处理步骤的效果至关重要。OpenCV提供了多种轮廓检测方法,包括但不限于:

  • Sobel算子 :通过计算图像亮度的梯度来突出边界。
  • Canny边缘检测器 :一种广泛使用的边缘检测算法,具有较好的边缘定位能力和噪声抑制能力。
  • Laplacian算子 :通过计算图像的二阶导数来检测边缘。

在实际应用中,选择哪种算法取决于具体的场景需求和图像特点。比如,Canny边缘检测器在检测边界时具有较高的准确性,但计算量相对较大;而Sobel算子则计算快速,但可能会受到噪声的影响。

3.2 轮廓筛选与特征分析

3.2.1 轮廓面积与周长的计算

一旦检测到轮廓,我们可以通过计算轮廓的面积和周长来获取对象的初步特征。在OpenCV中,这些值可以通过 cv2.contourArea() cv2.arcLength() 函数获得。

面积计算有助于我们了解对象的大小,而周长则可以用来推断对象的复杂程度。对于例如字符识别这样的任务来说,字符的面积和周长可以帮助区分不同大小的字符。

import cv2
import numpy as np

# 假设 `img` 是经过预处理的二值图像
# 寻找轮廓
contours, hierarchy = cv2.findContours(img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 遍历轮廓并计算面积和周长
for cnt in contours:
    area = cv2.contourArea(cnt)  # 计算面积
    perimeter = cv2.arcLength(cnt, True)  # 计算周长

    # 输出面积和周长
    print(f"Contour area: {area}, Contour perimeter: {perimeter}")

3.2.2 轮廓形状描述符的提取

为了更详细地描述和区分形状,轮廓检测技术可以进一步扩展到提取形状描述符。一些常见的形状描述符包括:

  • 最小外接矩形 :描述对象的最小边界矩形。
  • 轮廓近似 :通过多边形近似轮廓,减少点的数量来简化轮廓。
  • 方向性直方图 :根据轮廓点的分布确定形状的方向。

下表展示了如何使用这些描述符来区分不同的形状:

形状描述符 描述 应用场景
最小外接矩形 对象的最小边界矩形 快速估计对象的方向和尺寸
轮廓近似 使用更少的点来近似轮廓形状 减少计算量,降低复杂度
方向性直方图 描述轮廓点的方向分布 识别和分类具有特定方向的形状

使用这些描述符可以帮助我们从轮廓数据中提取出更有用的特征,为图像识别、形状分类等任务提供更准确的信息。

3.3 轮廓绘制与视觉化

3.3.1 轮廓的绘制技术

在OpenCV中,轮廓绘制通常使用 cv2.drawContours() 函数。该函数能够在图像上直接绘制出轮廓线,甚至可以将轮廓填充成不同的颜色。

绘制轮廓不仅有助于直观展示轮廓检测的结果,而且在某些应用场景中,如图形用户界面(GUI)或标记特定区域时,是必不可少的功能。

# 假设 `image` 是我们的原始图像
# 绘制轮廓
cv2.drawContours(image, contours, -1, (0,255,0), 3)

# 显示图像
cv2.imshow("Drawn Contours", image)
cv2.waitKey(0)
cv2.destroyAllWindows()

3.3.2 视觉化效果增强

为了增强轮廓检测的视觉效果,可以采用多种技术,例如:

  • 颜色映射 :为不同的轮廓应用不同的颜色映射。
  • 轮廓层次 :通过不同的轮廓线宽和样式来表示层次结构。
  • 透明度 :使用半透明效果来展示多个重叠的轮廓。

视觉化效果的增强,不仅提高了结果的可读性,而且有助于突出重要信息,提高整体的用户体验。下图展示了在不同层次上进行颜色映射的效果:

在上图中,不同颜色的轮廓代表不同的层次结构,这有助于观察者区分和理解图像中的各个组成部分。

综上所述,轮廓检测技术是图像处理中不可或缺的一部分,它通过提取图像中对象的边界信息,为后续的分析和处理提供了丰富的特征。从理论到实践,我们探讨了轮廓检测的基本原理、特点、以及如何应用OpenCV中的工具和函数来实现轮廓的筛选、特征提取和视觉化表示。轮廓检测技术的这些关键方面,对于实现精确的图像理解和自动化分析具有重要的意义。

4. 数字识别的实现过程

数字识别在计算机视觉领域中是一个重要的应用,它广泛应用于邮政编码识别、自动计票系统、银行支票处理和许多其他需要从图像中提取数字信息的场合。本章节我们将详细介绍数字识别的实现过程,包括外接矩形定位技术、数字分割策略和模板匹配过程。

4.1 外接矩形定位技术

外接矩形定位技术是数字识别前的重要步骤,它可以帮助我们精确定位图像中的数字区域,从而提高后续处理的准确性和效率。

4.1.1 外接矩形的计算方法

外接矩形的计算通常基于图像二值化和连通区域分析。首先,通过阈值处理将图像转换为二值图像,之后,我们可以使用 cv2.findContours 函数来找到所有连通区域。然后,对每个连通区域使用 cv2.boundingRect 函数来计算其外接矩形。

import cv2
import numpy as np

# 读取图像并转换为灰度图
image = cv2.imread('number_image.png', cv2.IMREAD_GRAYSCALE)
_, binary_image = cv2.threshold(image, 127, 255, cv2.THRESH_BINARY)

# 寻找二值图像中的连通区域
contours, _ = cv2.findContours(binary_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

# 遍历所有连通区域
for cnt in contours:
    # 计算外接矩形
    x, y, w, h = cv2.boundingRect(cnt)
    # 绘制外接矩形
    cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2)

在上述代码中,我们首先读取了包含数字的图像,并将其转换为灰度图。通过阈值处理,我们获取了一个二值图像。然后我们寻找二值图像中所有的连通区域,并计算每个区域的外接矩形坐标。最后,我们用绿色矩形框出每个连通区域,以示区分。

4.1.2 矩形定位的应用场景

外接矩形定位技术在很多场景下都十分有用,比如在处理手写数字识别时,可以将外接矩形作为切割图像的依据,从而提取出单个数字进行进一步的处理和分析。此外,它也可以应用在车牌识别、文本检测等其他图像处理任务中,以精确界定检测对象的边界。

4.2 数字分割策略

数字分割是将数字图像切分为单个数字的过程。准确的分割对于提高数字识别的准确率至关重要。

4.2.1 分割点的选取策略

分割点的选取通常依赖于数字的排列方式和外接矩形的位置。对于水平排列的数字,可以通过检测相邻数字外接矩形的间隙来确定分割点。垂直排列的数字则需要考虑行间距。

# 假设我们已经有了外接矩形的坐标列表
rectangles = [(x, y, w, h), ...]

# 计算矩形间的间隙
gaps = [rectangles[i+1][1] - (rectangles[i][1] + rectangles[i][3]) for i in range(len(rectangles)-1)]

# 根据间隙来确定分割点
# 此处代码省略了分割点计算的具体实现细节

在上述代码片段中,我们首先计算了每个外接矩形的高度,然后通过比较相邻矩形的顶部距离来确定是否存在足够的间隙。如果存在间隙,则此间隙的位置可以作为分割点,进而进行数字的分割。

4.2.2 分割效果的评估与优化

分割效果的评估可以从分割后数字的完整性、清晰度等方面进行。评估方法可以是人工检查,也可以使用算法自动检查。例如,检查分割后图像的宽度是否接近预估的单个数字宽度。对于分割效果的优化,则可能需要调整外接矩形定位的阈值或者对图像进行预处理,比如去噪、二值化操作的优化等。

4.3 模板匹配过程

模板匹配是数字识别中用于比较和识别数字的关键步骤,它通过与预定义的数字模板库进行比对来识别目标图像中的数字。

4.3.1 模板匹配的原理

模板匹配的基本原理是在目标图像上滑动模板图像,并计算模板图像和目标图像在不同位置的相关度,相关度最高的位置即为匹配结果。

import cv2

# 加载数字模板图像
template = cv2.imread('digit_template.png', 0)

# 目标图像
target_image = cv2.imread('number_image.png', 0)

# 执行模板匹配
res = cv2.matchTemplate(target_image, template, cv2.TM_CCOEFF_NORMED)

# 找到最佳匹配点
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)

在上述代码中,我们首先加载了数字的模板图像,并将其转换为灰度图。然后,我们使用 cv2.matchTemplate 函数来进行模板匹配,并通过 cv2.minMaxLoc 函数获取匹配结果的相关度。

4.3.2 匹配算法的选择与实现

在模板匹配中,可以选择不同的匹配算法来获取最佳结果。OpenCV 支持多种匹配算法,如 TM_CCOEFF , TM_CCOEFF_NORMED , TM_SQDIFF , TM_SQDIFF_NORMED 等。每种算法在不同的场景下表现各异。例如, TM_CCOEFF_NORMED 在模板图像和目标图像间存在线性变换时表现较好。

graph LR
    A[开始模板匹配] --> B[选择匹配算法]
    B --> C[计算匹配度]
    C --> D[找到最佳匹配位置]
    D --> E[提取匹配结果]
    E --> F[评估匹配质量]

在上述流程图中,我们从选择匹配算法开始,计算目标图像和模板图像之间的匹配度,找到最佳匹配位置,并根据匹配度提取匹配结果。最后,我们评估匹配质量,以确保匹配结果的准确性。

通过上述详尽的解释和代码实现,本章节我们介绍了数字识别的实现过程,从外接矩形定位技术到数字分割策略,再到模板匹配过程,每一步都是数字识别技术中不可或缺的环节。接下来的章节,我们将讨论数字识别技术的优化与应用。

5. 数字识别技术的优化与应用

5.1 匹配评估及决策制定

在数字识别技术中,匹配评估和决策制定是至关重要的步骤,它们共同确保了识别系统的准确性和鲁棒性。

5.1.1 匹配结果的评价标准

评价一个数字识别匹配过程是否成功,通常会用以下几个标准:

  • 准确率(Precision) :在所有识别为数字的检测中,有多少是正确的。公式为 准确率 = 正确识别的数字数 / 总识别数
  • 召回率(Recall) :在所有实际的数字中,有多少被正确识别。公式为 召回率 = 正确识别的数字数 / 总数字数
  • F1分数(F1 Score) :准确率和召回率的调和平均数,用以综合考量两者。公式为 F1 = 2 * (准确率 * 召回率) / (准确率 + 召回率)

在实际应用中,我们往往需要在准确率和召回率之间找到一个平衡点,因为提高准确率可能会导致召回率的下降,反之亦然。

5.1.2 决策制定的策略与方法

决策制定是识别流程的最后环节,它根据评估阶段提供的信息来确定最终的识别结果。常见的策略有:

  • 阈值法 :设定一个置信度阈值,只有当识别结果的置信度高于该阈值时,才认为识别是正确的。
  • 投票法 :当多个模型或多次识别对同一个数字进行识别时,根据每个结果的置信度进行投票,多数胜出。
  • 序列模型法 :利用诸如隐马尔可夫模型(HMM)之类的序列模型来评估数字序列的整体可能性,以得到最终识别结果。

5.2 深度学习模型应用

随着深度学习技术的发展,越来越多的数字识别系统开始采用神经网络模型,以期达到更高的识别准确率和鲁棒性。

5.2.1 神经网络在数字识别中的应用

在数字识别中,卷积神经网络(CNN)由于其强大的特征提取能力而被广泛使用。例如:

  • LeNet-5 :这是一个早期的CNN模型,用于手写数字识别。它由多个卷积层、池化层和全连接层组成,能够有效地从图像中提取特征并进行分类。
  • AlexNet :该模型是深度学习革命的开端,它的成功证明了深层神经网络在图像识别中的有效性。

5.2.2 训练模型与调优技巧

训练深度学习模型并非易事,需要考虑到诸多因素以确保模型的泛化能力和识别精度:

  • 数据增强 :通过对训练图像进行旋转、缩放、裁剪等操作,可以大幅增加模型的鲁棒性和泛化能力。
  • 权重初始化 :选择合适的权重初始化方法可以加快模型训练速度并提高收敛质量。
  • 正则化 :使用L1、L2正则化或者Dropout等技术可以防止过拟合,提高模型在未见数据上的表现。
  • 学习率调整 :动态调整学习率,如学习率衰减或者使用学习率预热策略,可以提高训练的稳定性和收敛速度。

5.3 实际案例分析与展望

5.3.1 实际应用场景举例

在现实中,数字识别技术已被广泛应用。例如:

  • 邮政编码识别 :自动处理信件,识别邮政编码。
  • 税务表单处理 :自动识别和录入税务表单上的数字信息。
  • 银行支票处理 :对支票上的金额和账号等数字信息进行自动化识别。

5.3.2 数字识别技术的发展趋势与挑战

尽管数字识别技术已取得了长足的进步,但仍面临着一些挑战和未来的发展趋势:

  • 实时性要求 :随着对识别速度要求的提高,如何快速准确地进行数字识别成为研究的热点。
  • 多模态识别 :结合图像、声音、文本等多种输入模式,提高识别的准确度和鲁棒性。
  • 小样本学习 :如何在有限的训练样本下训练出鲁棒的模型,是未来研究的方向之一。

通过不断的优化和技术创新,数字识别技术将继续在各个领域发挥重要作用,并持续推动相关应用的发展。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:OpenCV是一个广泛使用的计算机视觉库,能够帮助开发者高效实现图像分析和识别任务。数字识别是计算机视觉中的关键技术,可用于车牌识别、验证码识别和银行支票读取等。本文介绍基于OpenCV的数字识别流程,包括图像预处理、轮廓检测、外接矩形获取、数字分割、模板匹配和匹配评估等步骤。通过实现这些步骤,我们可以学习如何应用这些技术,提高数字识别的准确性。此外,也可以探索使用深度学习模型进行数字识别,以进一步提高识别的准确性和鲁棒性。


本文还有配套的精品资源,点击获取
menu-r.4af5f7ec.gif

您可能感兴趣的与本文相关的镜像

PyTorch 2.7

PyTorch 2.7

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值