R语言的包bnlearn生成的概率图模型如何进行后续的检验和验证是否合理?有相关示例和论文吗?...

bnlearn 包生成的概率图模型可以通过多种方法进行后续检验和验证。具体来说,可以考虑以下几种方法:

  1. 对模型进行统计检验,以评估模型是否符合数据的分布。例如,可以使用Kolmogorov-Smirnov检验,Lilliefors检验等。

  2. 对模型的拟合效果进行评估,例如,可以使用经典的拟合指标,如平均绝对误差(MAE),均方误差(MSE),决定系数(R2)等。

  3. 对模型的预测效果进行评估,例如,可以使用混淆矩阵,精确率,召回率,F1值等。

  4. 对模型的结构合理性进行评估,例如,可以使用Bayesian结构检验,bootstrapped结构检验等。

关于bnlearn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值