java ExecutorService的invokeAll方法有两种用法

  1. exec.invokeAll(tasks)

  2. exec.invokeAll(tasks, timeout, unit)

其中tasks是任务集合,timeout是超时时间,unit是时间单位

两者都会堵塞,必须等待所有的任务执行完成后统一返回,一方面内存持有的时间长;另一方面响应性也有一定的影响,毕竟大家都喜欢看看刷刷的执行结果输出,而不是苦苦的等待;

但是方法二增加了超时时间控制,这里的超时时间是针对的所有tasks,而不是单个task的超时时间。如果超时,会取消没有执行完的所有任务,并抛出超时异常。相当于将每一个future的执行情况用一个list集合保存,当调用future.get()方法取值时和设置的timeout比较,是否超时。

InvokeAll方法处理一个任务的容器(collection),并返回一个Future的容器。两个容器具有相同的结构;

这里提交的任务容器列表和返回的Future列表存在顺序对应的关系。

invokeAll将Future添加到返回容器中,这样可以使用任务容器的迭代器,从而调用者可以将它表现的Callable与Future关联起来。

当所有任务都完成时、调用线程被中断时或者超过时限时,限时版本的invokeAll都会返回结果。超过时限后,任何尚未完成的任务都会被取消。

作为invokeAll的返回值,每个任务要么正常地完成,要么被取消。

示例:

控制批量任务的时间期限

import java.math.BigDecimal;
import java.sql.Time;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.Random;
import java.util.concurrent.Callable;
import java.util.concurrent.CancellationException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Future;
import java.util.concurrent.TimeUnit;
 
/**
 * 批量任务的限时 invokeAll(tasks) 批量提交不限时任务
 * 
 * invokeAll(tasks, timeout, unit) 批量提交限时任务
 * 
 * InvokeAll方法处理一个任务的容器(collection),并返回一个Future的容器。两个容器具有相同的结构:
 * invokeAll将Future添加到返回的容器中,这样可以使用任务容器的迭代器,从而调用者可以将它表现的Callable与Future 关联起来。
 * 当所有任务都完成时、调用线程被中断时或者超过时限时,限时版本的invokeAll都会返回结果。 超过时限后,任务尚未完成的任务都会被取消。
 * 
 * @author hadoop
 *
 */
public class InvokeAllThread {
	// 固定大小的线程池,同时只能接受5个任务
	static ExecutorService mExecutor = Executors.newFixedThreadPool(5);
 
	/**
	 * 计算价格的任务
	 * @author hadoop
	 *
	 */
	private class QuoteTask implements Callable<BigDecimal> {
		public final double price;
		public final int num;
 
		public QuoteTask(double price, int num) {
			this.price = price;
			this.num = num;
		}
 
		@Override
		public BigDecimal call() throws Exception {
			Random r = new Random();
			long time = (r.nextInt(10) + 1) * 1000;
			Thread.sleep(time);
 
			BigDecimal d = BigDecimal.valueOf(price * num).setScale(2);
			System.out.println("耗时:" + time / 1000 + "s,单价是:" + price + ",人数是:"
					+ num + ",总额是:" + d);
			return d;
		}
	}
 
	/**
	 * 在预定时间内请求获得旅游报价信息
	 * 
	 * @return
	 */
	public   void getRankedTravelQuotes() throws InterruptedException {
		List<QuoteTask> tasks = new ArrayList<QuoteTask>();
		// 模拟10个计算旅游报价的任务
		for (int i = 1; i <= 20; i++) {
			tasks.add(new QuoteTask(200, i) );
		}
 
		/**
		 * 使用invokeAll方法批量提交限时任务任务 预期15s所有任务都执行完,没有执行完的任务会自动取消
		 * 
		 */
	    List<Future<BigDecimal>> futures = mExecutor.invokeAll(tasks, 15, TimeUnit.SECONDS);
		// 报价合计集合
		List<BigDecimal> totalPriceList = new ArrayList<BigDecimal>();
 
		Iterator<QuoteTask> taskIter = tasks.iterator();
 
		for (Future<BigDecimal> future : futures) {
			 QuoteTask task = taskIter.next();
			try {
				totalPriceList.add(future.get());
			} catch (ExecutionException e) {
				// 返回计算失败的原因
				// totalPriceList.add(task.getFailureQuote(e.getCause()));
				totalPriceList.add(BigDecimal.valueOf(-1));
				 System.out.println("任务执行异常,单价是"+task.price+",人数是:"+task.num);
			} catch (CancellationException e) {
				// totalPriceList.add(task.getTimeoutQuote(e));
				totalPriceList.add(BigDecimal.ZERO);
				 System.out.println("任务超时,取消计算,单价是"+task.price+",人数是:"+task.num);
			}
		}
		for (BigDecimal bigDecimal : totalPriceList) {
			System.out.println(bigDecimal);
		}
		mExecutor.shutdown();
	}
 
	
	public static void main(String[] args) {
		try {
			InvokeAllThread it = new InvokeAllThread();
			it.getRankedTravelQuotes();
		} catch (InterruptedException e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		}
	}
 
}
执行结果:
耗时:3s,单价是:200.0,人数是:5,总额是:1000.00
耗时:3s,单价是:200.0,人数是:3,总额是:600.00
耗时:3s,单价是:200.0,人数是:7,总额是:1400.00
耗时:7s,单价是:200.0,人数是:4,总额是:800.00
耗时:4s,单价是:200.0,人数是:6,总额是:1200.00
耗时:1s,单价是:200.0,人数是:9,总额是:1800.00
耗时:10s,单价是:200.0,人数是:1,总额是:200.00
耗时:10s,单价是:200.0,人数是:2,总额是:400.00
耗时:3s,单价是:200.0,人数是:11,总额是:2200.00
耗时:4s,单价是:200.0,人数是:10,总额是:2000.00
耗时:2s,单价是:200.0,人数是:12,总额是:2400.00
耗时:6s,单价是:200.0,人数是:8,总额是:1600.00
耗时:3s,单价是:200.0,人数是:13,总额是:2600.00
耗时:2s,单价是:200.0,人数是:17,总额是:3400.00
任务超时,取消计算,单价是200.0,人数是:14
任务超时,取消计算,单价是200.0,人数是:15
任务超时,取消计算,单价是200.0,人数是:16
任务超时,取消计算,单价是200.0,人数是:18
任务超时,取消计算,单价是200.0,人数是:19
任务超时,取消计算,单价是200.0,人数是:20
200.00
400.00
600.00
800.00
1000.00
1200.00
1400.00
1600.00
1800.00
2000.00
2200.00
2400.00
2600.00
0
0
0
3400.00
0
0
0

Process finished with exit code 0

不控制超时时间期限

/**
 * 测试InvokeAll批量提交任务集
 * @throws InterruptedException 
 */
public  static void testInvokeAllThread() throws InterruptedException{
	ExecutorService exec = Executors.newFixedThreadPool(10);
 
	List<Callable<Integer>> tasks = new ArrayList<Callable<Integer>>();
	Callable<Integer> task = null;
	for (int i = 0; i < 20; i++) {
		task = new Callable<Integer>() {
			@Override
			public Integer call() throws Exception {
				int ran = new Random().nextInt(1000);
				Thread.sleep(ran);
				System.out.println(Thread.currentThread().getName()
						+ " 休息了 " + ran);
				return ran;
			}
		};
 
		tasks.add(task);
	}
 
	long s = System.currentTimeMillis();
	
	List<Future<Integer>> results = exec.invokeAll(tasks);
 
	System.out.println("执行任务消耗了 :" + (System.currentTimeMillis() - s)
			+ "毫秒");
 
	for (int i = 0; i < results.size(); i++) {
		try {
			System.out.println(results.get(i).get());
		} catch (Exception e) {
			e.printStackTrace();
		}
	}
 
	exec.shutdown();
}
执行结果
pool-2-thread-8 休息了 20
pool-2-thread-3 休息了 68
pool-2-thread-2 休息了 278
pool-2-thread-6 休息了 282
pool-2-thread-1 休息了 310
pool-2-thread-10 休息了 343
pool-2-thread-8 休息了 448
pool-2-thread-10 休息了 155
pool-2-thread-9 休息了 568
pool-2-thread-5 休息了 609
pool-2-thread-9 休息了 99
pool-2-thread-10 休息了 175
pool-2-thread-8 休息了 271
pool-2-thread-7 休息了 881
pool-2-thread-4 休息了 927
pool-2-thread-3 休息了 886
pool-2-thread-5 休息了 407
pool-2-thread-1 休息了 796
pool-2-thread-2 休息了 856
pool-2-thread-6 休息了 948
执行任务消耗了 :1232毫秒
310
278
68
927
609
282
881
20
568
343
448
886
856
948
796
155
271
175
99
407

Process finished with exit code 0

转载请注明出处!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值