堆的基本操作

#include<cstdio>
#include<algorithm>

using namespace std;
const int maxn = 100;
//用数组来存储完全二叉树,第一个结点从1开始
int heap[maxn] = {0, 85, 55, 82, 57, 68, 92, 99, 98, 66, 56};
int n = 10;


//low为欲调整结点的数组下标,在[low, high]范围进行向下调整 
void downAdjust(int low, int high){
	int i = low, j = i * 2;	//i为欲调整结点,j为其左孩子 
	while(j <= high){	//存在孩子结点 
		//如果右孩子存在,且右孩子的值大于左孩子 
		if(j + 1 <= high && heap[j + 1] > heap[j]){
			j = j + 1;	//让j存储右孩子下标 
		}
		//如果孩子中最大的权值比欲调整结点i大
		if(heap[j] > heap[i]){
			swap(heap[j], heap[i]);	//交换最大权值的孩子与欲调整结点i 
			i = j;	//保持i为欲调整结点、j为i的左孩子 
			j = i * 2;
		} else {
			break;	//孩子的权值均比欲调整结点i小,调整结束 
		}
	}
}

void createHeap(){
	for(int i = n / 2; i >= 1; i--){	//倒着枚举非叶子结点 
		downAdjust(i, n);
	}
} 

void deleteTop(){
	heap[1] = heap[n--];	//用最后一个元素覆盖堆顶元素,并让元素个数减1 
	downAdjust(1, n); 
} 

void upAdjust(int low, int high){
	int i = high, j = i / 2;	//i为欲调整结点,j为其父亲 
	while(j >= low){	//父亲在[low,high]范围内
		//父亲权值小于欲调整结点i的权值 
		if(heap[j] < heap[i]){
			swap(heap[j], heap[i]);	//交换父亲和欲调整结点 
			i = j;	//保持i为欲调整节点、j为i的父亲 
			j = i / 2;
		} else {
			break;	//父亲权值比欲调整结点i的权值大,调整结束 
		}
	}
}

void insert(int x){
	heap[++n] = x;	//让元素个数加1,将数组末位赋值为x 
	upAdjust(1, n);	//向上调整新加入的结点n 
}

//堆排序 
void heapSort(){
	createHeap();
	for(int i = n; i > 1; i--){
		swap(heap[i], heap[1]);
		downAdjust(1, i - 1);
	}
}

int main(){	
	createHeap(); 
	
	insert(111);
	for(int i = 1; i <= n; i++){
		printf("%d ", heap[i]);
	}
	
	
	printf("\n");
	deleteTop();
	for(int i = 1; i <= n; i++){
		printf("%d ", heap[i]);
	} 
	
	printf("\n");
	heapSort();
	for(int i = 1; i <= n; i++){
		printf("%d ", heap[i]);
	} 
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值