堆的概念及基本操作实现


1.堆的基本概念:

严格来讲,堆有不同的种类,但是我们在算法学习中,主要用的还是二叉堆,而二叉堆有最大堆和最小堆之分。

最大(最小)堆是一棵每一个节点的键值都不小于(大于)其孩子(如果存在)的键值的树。大顶堆是一棵完全二叉树,同时也是一棵最大树。小顶堆是一棵完全完全二叉树,同时也是一棵最小树。

需要注意的问题是:堆中的任一子树也还是堆,即大顶堆的子树也都是大顶堆,小顶堆同样。


如图一为大顶堆,图二为小顶堆(摘自CSDN博客)

2.堆的一些基本性质:

首先我们从上图中可以看出,由于堆是一棵完全二叉树,那么我们可以得出堆的如下性质:

(1). 堆的插入和删除操作,运行时间为 O(logn),n 为树上结点的个数

简单证明:

假设该二叉树总共有x层,那么很明显当该二叉树为满二叉树的时候,插入和删除耗费的时间是最长的,那么则有:

2^x - 1 = n;

在最坏的情况下,我们插入一个元素的时候,是从第一层遍历到第n层(反之也一样),那么我们最多要进行的操作次数即为树的深度,而树的深度x = log(2)(n+1)(表示以2为底,以n+1为真数的对数),忽略常数,那么我们就求得插入时的最坏时间复杂度则为O(logn)级别。

删除与插入同理,删除时需要注意的问题就是,删除一个元素之后,需要重新调整堆的结构,使其成为新的堆。

(2).堆可以看成是一棵完全二叉树,除最后一层其余每层结点都是满的。

3.堆的插入和删除操作实现:

(1).首先我们看堆的插入操作:

图转自http://blog.csdn.net/cdnight/article/details/11650983/

如上图所示,是一个大根堆的插入演示,插入的数据元素为80,一开始的时候,我们将待插入的数据元素接至堆的末尾,然后再不断向上提升直至没有大小颠倒为止。

我们以上图为例简述堆插入元素的过程:

一开始的时候,元素80和其父亲节点比较,发现其大于父亲节点,因此要上溢,将元素80与其父亲节点进行交换,交换后再重复上述过程,发现元素80仍然比其父亲节点大,继续上溢,将元素80与其父亲节点进行交换,然后再将其与父亲节点比较,发现此时小于其父亲节点的值,说明此时堆中不再存在大小颠倒了,那么此时元素80找到了它在堆中的位置,插入操作结束。

在实现以上算法分析过程时,我们需要明确的问题是,我们不使用指针来表示二叉树,而是用数组存储(因为在这里的堆是完全二叉树的原因,因此用数组实现更简单,而且不存在大量的空间浪费),所以呢,对于每个节点,如果其有左孩子和右孩子的话,那么:

(1).左孩子节点的编号是其自身节点编号 * 2 + 1;

(1).右孩子节点的编号是其自身节点编号 * 2 + 2;(编号是指其用数组中存储时的下标)

因此根据上述分析,得出代码:

//往堆中插入元素,数组下标从0开始

void push(int value){   //value表示插入堆的值
    Heap[size] = value;    //一开始元素接在堆的最后面
    int current = size;      //表示当前遍历到的节点
    int father = (current-1) / 2;    //表示当前遍历到的堆中元素父亲节点的下标
    while(current > 0 && Heap[current] < Heap[father]){
        swap(Heap[current],Heap[father]);       //表示此时节点"上溢",当前节点与其父节点对换.
        current = father;
        father = (current-1) / 2;     //继续向上遍历
    }
    ++size;
}
(2).其次是删除操作:

在删除操作中,我们这里介绍一下简单的删除堆顶元素,在删除堆顶元素之前,那么我们首先要明白的是要如何获取堆顶元素:

很容易想到,堆顶元素自然是数组 data 存储的第 0 位元素。

因此我们可以想到用如下代码获取堆顶元素:

//获取堆顶元素
int top(){
    return Heap[0];
}
那么要怎么样删除堆顶元素呢?你可能会说,直接将堆顶元素删除不就好了,可是一旦堆顶元素删除了,整个二叉堆的结构将完全被破坏,那么这时候我们要做的不仅仅是删除堆顶元素,而是在删除操作完成之后,还要重新调整堆的结构,使其成为一个新的堆。

所以这里我们这样删除堆顶元素:将堆顶元素和堆的最后一个元素进行交换,然后对堆顶元素做一个自上而下的堆调整,也就是下滤操作。

下滤操作和上溢操作类似,也是不断交换父亲节点以及其孩子节点,然后更新当前遍历到的节点的编号以及其孩子节点的编号,直到堆中没有大小颠倒为止。

那么根据以上分析,我们可以得出以下完整代码:

/**删除栈顶元素
  *删除栈顶元素时,不可直接将size的值减一后就结束,这样的话会破坏整个
  *二叉堆的结构,因此我们在删除堆顶元素之后还要调整堆的结构,使其成为新的堆
  *并且有新的堆顶元素
  */
void pop(){
    Heap[0] = Heap[--size];     /*首先将最后一个元素替换堆顶元素,这样的话堆顶元素则被删除
                                 *然后再是size减一表示堆中元素数目减一
                                 */
    int current = 0;            //当前遍历到的节点的下标
    int lchild = current*2 + 1,rchild = current*2 + 2;  //当前遍历到的节点的左孩子和右孩子节点的下标
    while(lchild < size && min(Heap[lchild],Heap[rchild]) < Heap[current]){
        if(Heap[lchild] < Heap[rchild]){
            swap(Heap[lchild],Heap[current]);
            current = lchild;       //"下溢"的过程
        }
        else{
            swap(Heap[rchild],Heap[current]);
            current = rchild;
        }
        lchild = current*2 + 1;
        rchild = current*2 + 2;
    }

}

需要特别注意的问题是,这种情况对于删除堆顶元素适用,但是要删除堆中的其他元素,下溢法会出错。详细分析:

【算法】堆,最大堆(大顶堆)及最小堆(小顶堆)的实现

【算法】堆,最大堆(大顶堆)及最小堆(小顶堆)的实现【2】---软件截图及算法代码

整个二叉堆(小根堆)插入和删除操作的完整实现代码:

        //二叉堆(数组存储)的插入,删除堆顶元素(以小根堆为例,即堆顶元素最小)
#include<cstdio>
#include<algorithm>
using namespace std;
const int Max_size = (int)1e3;  //表示堆中能够容纳元素个数的最大值
int size = 0,Heap[Max_size];         //记录当前堆中元素下标最大值
//往堆中插入元素,数组下标从0开始

void push(int value){   //value表示插入堆的值
    Heap[size] = value;    //一开始元素接在堆的最后面
    int current = size;      //表示当前遍历到的节点
    int father = (current-1) / 2;    //表示当前遍历到的堆中元素父亲节点的下标
    while(current > 0 && Heap[current] < Heap[father]){
        swap(Heap[current],Heap[father]);       //表示此时节点"上溢",当前节点与其父节点对换.
        current = father;
        father = (current-1) / 2;     //继续向上遍历
    }
    ++size;
}

/**删除栈顶元素
  *删除栈顶元素时,不可直接将size的值减一后就结束,这样的话会破坏整个
  *二叉堆的结构,因此我们在删除堆顶元素之后还要调整堆的结构,使其成为新的堆
  *并且有新的堆顶元素
  */
void pop(){
    Heap[0] = Heap[--size];     /*首先将最后一个元素替换堆顶元素,这样的话堆顶元素则被删除
                                 *然后再是size减一表示堆中元素数目减一
                                 */
    int current = 0;            //当前遍历到的节点的下标
    int lchild = current*2 + 1,rchild = current*2 + 2;  //当前遍历到的节点的左孩子和右孩子节点的下标
    while(lchild < size && min(Heap[lchild],Heap[rchild]) < Heap[current]){
        if(Heap[lchild] < Heap[rchild]){
            swap(Heap[lchild],Heap[current]);
            current = lchild;       //"下溢"的过程
        }
        else{
            swap(Heap[rchild],Heap[current]);
            current = rchild;
        }
        lchild = current*2 + 1;
        rchild = current*2 + 2;
    }

}

//获取堆顶元素
int top(){
    return Heap[0];
}

//输出堆中元素
void output(){
    for(int i = 0;i < size;++i){
        printf("%d ",Heap[i]);
    }
    printf("\n");
}
int main(){
    int a[6];
    for(int i = 0;i < 6;++i){
        scanf("%d",&a[i]);
        push(a[i]);
    }
    printf("小根二叉堆堆顶元素为:%d\n",top());
    output();
    return 0;
}

运行效果实现:


C++实现的大根堆的插入和删除操作:

#include<iostream>
using namespace std;
class Heap {
private:
    int *data, size;
public:
    Heap(int length_input) {
        data = new int[length_input];
        size = 0;
    }
    ~Heap() {
        delete[] data;
    }
    void push(int value) {
        data[size] = value;
        int current = size;
        int father = (current - 1) / 2;
        while (data[current] > data[father]) {
            swap(data[current], data[father]);
            current = father;
            father = (current - 1) / 2;
        }
        size++;
    }
    void output() {
        for (int i = 0; i < size; i++) {
            cout << data[i] << " ";
        }
        cout << endl;
    }
    int top(){
        return data[0];
    }
    void update(int pos,int n){
        int lchild = 2 * pos + 1,rchild = 2 * pos + 2;
        int max_value = pos;
        if(lchild < n && data[lchild] > data[max_value]){
            max_value = lchild;
        }
        if(rchild < n && data[rchild] > data[max_value]){
            max_value = rchild;
        }
        if(max_value != pos){
            swap(data[pos],data[max_value]);
            update(max_value,n);
        }
    }
    void pop(){
        swap(data[0],data[size-1]);
        --size;
        update(0,size);
    }
};
int main() {
    int arr[10] = { 12, 9, 30, 24, 30, 4, 55, 64, 22, 37 };
    Heap heap(100);
    for (int i = 0; i < 10; i++) {
        heap.push(arr[i]);
    }
    cout << "堆中所有的元素为:";
    heap.output();
    cout <<"堆顶元素为: " << heap.top() << endl;
    heap.pop();         //删除堆顶元素
    cout << "删除堆顶元素后的堆中元素为:";
    heap.output();
    return 0;
}



总结:堆和优先队列是非常常用和重要的数据结构,不管是手写还是用STL实现,都要熟练掌握。


如有错误,还请指正,O(∩_∩)O谢谢





相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页