【SWOMP】:面向风电数据的WSN压缩感知数据重构附matlab代码

本文介绍了分段弱正交匹配追踪(SWOMP)算法在风电场无线传感网络中的应用,通过实例展示了算法如何使用高斯矩阵进行信号重构,并展示了不同门限参数下恢复信号的效果和残差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

⛄ 内容介绍

分段弱正交匹配追踪(SWOMP)算法的算法简单、运算速度快,适合应用在风电场环境下的无线传 感网络(WSN)中。分段弱正交匹配追踪(SWOMP)算法是正交匹配追踪(OMP)算法的一种改进的算法,对原有的原子选择方法进行了改进,通过门限参数的设定,采用内积法准则度量方法来选择最优因子在冗余字典中。

⛄ 部分代码

clear all;close all;clc;

xx=xlsread('负荷数据.xlsx');

M = 500;%观测值个数

N = 256;%信号x的长度

% K = 10;%信号x的稀疏度

a1=0.2;a2=0.4;a3=0.6;a4=0.8;

s1=30;

x = xx(1:N,1);

Psi = eye(N);%x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*theta

Phi1 = randn(M,N)/sqrt(M);%测量矩阵为高斯矩阵

A1 = Phi1 * Psi;%传感矩阵

y1 = Phi1 * x;%得到观测向量y

Phi2 = randn(M,N)/sqrt(M);%测量矩阵为高斯矩阵

A2 = Phi2 * Psi;%传感矩阵

y2 = Phi2 * x;%得到观测向量y

Phi3 = randn(M,N)/sqrt(M);%测量矩阵为高斯矩阵

A3 = Phi3 * Psi;%传感矩阵

y3 = Phi3 * x;%得到观测向量y

Phi4 = randn(M,N)/sqrt(M);%测量矩阵为高斯矩阵

A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笨本君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值