The Python Tutorial 4

4. More Control Flow Tools

Besides the while statement just introduced, Python knows the usual control flow statements known from other languages, with some twists.

4.1. if Statements

Perhaps the most well-known statement type is the if statement. For example:

>>>

>>> x = int(input("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:
...     x = 0
...     print('Negative changed to zero')
... elif x == 0:
...     print('Zero')
... elif x == 1:
...     print('Single')
... else:
...     print('More')
...
More

There can be zero or more elif parts, and the else part is optional(可选的). The keyword ‘elif’ is short for ‘else if’, and is useful to avoid excessive indentation. An if … elif … elif … sequence is a substitute for the switch or casestatements(案例陈述) found in other languages.

4.2. for Statements

The for statement in Python differs a bit from what you may be used to in C or Pascal. Rather than always iterating over(迭代) an arithmetic progression(算数级数) of numbers (like in Pascal), or giving the user the ability to define both the iteration step (迭代步数)and halting(暂停) condition (as C), Python’s for statement iterates over the items(项目) of any sequence (a list or a string), in the order that they appear in the sequence. For example (no pun intended):

>>>

>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12

If you need to modify(修改) the sequence you are iterating over while inside the loop (for example to duplicate selected items), it is recommended that(建议) you first make a copy. Iterating over a sequence does not implicitly(隐士) make a copy. The slice notation(切片表示法) makes this especially convenient:

循环列表在循环的过程中就修改列表的的值,可以通过切片的方式实现,切片只是对列表做了一个复制从而达到修改的目的>

>>> for w in words[:]:  # Loop over a slice copy of the entire list.
...     if len(w) > 6:
...         words.insert(0, w)
...
>>> words
['defenestrate', 'cat', 'window', 'defenestrate']

With for w in words:, the example would attempt to create an infinite list, inserting defenestrate over and over again.

4.3. The range() Function

If you do need to iterate over a sequence of numbers(数字序列), the built-in function range() comes in handy(方便,便利). It generates(生成) arithmetic progressions:

>>>

>>> for i in range(5):
...     print(i)
...
0
1
2
3
4

The given end point (给定的终点)is never part of the generated sequence(生成序列); range(10) generates 10 values, the legal indices(索引) for items of a sequence of length 10. It is possible to let the range start at another number, or to specify a different increment (even negative; sometimes this is called the ‘step’):

range(5, 10)
   5, 6, 7, 8, 9

range(0, 10, 3)
   0, 3, 6, 9

range(-10, -100, -30)
  -10, -40, -70

To iterate over the indices of a sequence, you can combine range() and len() as follows:

>>>

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
...     print(i, a[i])
...
0 Mary
1 had
2 a
3 little
4 lamb

In most such cases, however, it is convenient to use the enumerate() function, see Looping Techniques.

A strange thing happens if you just print a range:

>>>

>>> print(range(10))
range(0, 10)

In many ways the object returned by range() behaves as if it is a list, but in fact it isn’t. It is an object which returns the successive items of the desired sequence when you iterate over it, but it doesn’t really make the list, thus saving space.

We say such an object is iterable, that is, suitable as a target for functions and constructs that expect something from which they can obtain successive items until the supply is exhausted. We have seen that the for statement is such an iterator. The function list() is another; it creates lists from iterables:

>>>

>>> list(range(5))
[0, 1, 2, 3, 4]

Later we will see more functions that return iterables and take iterables as argument.

4.4. break and continue Statements, and else Clauses on Loops

The break statement, like in C, breaks out of the innermost enclosing(封闭) for or while loop. (跳出内部循环)

Loop statements may have an else clause; it is executed(执行) when the loop terminates(终止) through exhaustion(终点,结束,末尾) of the list (with for) or when the condition becomes false (with while), but not when the loop is terminated by a breakstatement. This is exemplified by the following loop, which searches for prime numbers(质数):

>>>

>>> for n in range(2, 10):
...     for x in range(2, n):
...         if n % x == 0:
...             print(n, 'equals', x, '*', n//x)
...             break
...     else:
...         # loop fell through without finding a factor
...         print(n, 'is a prime number')
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3

(Yes, this is the correct code. Look closely: the else clause belongs to the for loop, not the if statement.)

When used with a loop, the else clause has more in common with the else clause of a try statement than it does that of if statements: a try statement’s else clause runs when no exception occurs, and a loop’s elseclause runs when no break occurs. For more on the try statement and exceptions, see Handling Exceptions.

The continue statement, also borrowed from C, continues with the next iteration of the loop:

>>>

>>> for num in range(2, 10):
...     if num % 2 == 0:
...         print("Found an even number", num)
...         continue
...     print("Found a number", num)
Found an even number 2
Found a number 3
Found an even number 4
Found a number 5
Found an even number 6
Found a number 7
Found an even number 8
Found a number 9

4.5. pass Statements

The pass statement does nothing. It can be used when a statement is required syntactically(语法) but the program requires no action. For example:

>>>

>>> while True:
...     pass  # Busy-wait for keyboard interrupt (Ctrl+C)
...

This is commonly used for creating minimal classes (最小的类):

>>>

>>> class MyEmptyClass:
...     pass
...

Another place pass can be used is as a place-holder for a function or conditional body when you are working on new code, allowing you to keep thinking at a more abstract level. The pass is silently ignored(忽视):

>>>

>>> def initlog(*args):
...     pass   # Remember to implement this!
...

4.6. Defining Functions

We can create a function that writes the Fibonacci series to an arbitrary(随意) boundary(边界):

>>>

>>> def fib(n):    # write Fibonacci series up to n
...     """Print a Fibonacci series up to n."""
...     a, b = 0, 1
...     while a < n:
...         print(a, end=' ')
...         a, b = b, a+b
...     print()
...
>>> # Now call the function we just defined:
... fib(2000)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597

The keyword def introduces a function definition. It must be followed by the function name and the parenthesized(括号) list of formal parameters(参数) statements that form the body of the function start at. The the next line, and must be indented(缩进).

The first statement of the function body can optionally(可选) be a string literal; this string literal is the function’s documentation string, or docstring(文档字符串). (More about docstrings can be found in the section(部分) Documentation Strings.) There are tools which use docstrings to automatically produce online or printed documentation, or to let the user interactively(交互) browse(浏览) through code; it’s good practice to include docstrings in code that you write, so make a habit of it.

函数体的第一个语句可以选择(任选)为字符串文字; 此字符串文字是函数的文档字符串,或docstring(文档字符串)。 (有关文档字符串的更多信息,请参阅文档字符串部分。)有些工具使用文档字符串自动生成在线或印刷文档,或者让用户通过代码交互式地(交互)浏览(浏览); 在您编写的代码中包含docstrings是一种很好的做法,所以要养成习惯。

The execution of a function introduces a new symbol table used for the local variables of the function. More precisely,(更确切的说) all variable assignments(变量赋值) in a function store the value in the local symbol table(符号表); whereas variable references(引用) first look in the local symbol table, then in the local symbol tables of enclosing functions(内部函数), then in the global symbol table(全局符号表), and finally in the table of built-in names(最后在内置函数名中). Thus, global variables(全局变量) cannot be directly assigned(访问) a value within a function (unless named in a global statement), although(虽然) they may be referenced.

全局变量不能在函数内部定义,如果你非要定义,必须加上global 变量名

The actual parameters (arguments) (实际参数)to a function call are introduced in the local symbol table of the called function when it is called; thus, arguments are passed using call by value (where the value is always an object reference, not the value of the object). [1] When a function calls another function, a new local symbol table is created for that call.

A function definition introduces the function name in the current symbol table. The value of the function name has a type that is recognized by the interpreter as a user-defined function. This value can be assigned to another name which can then also be used as a function. This serves as a general renaming mechanism:

函数定义在当前符号表中引入函数名称。 函数名称的值具有解释器将其识别为用户定义函数的类型。 此值可以分配给另一个名称,该名称也可以用作函数。 这是一般的重命名机制:

>>>

>>> fib
<function fib at 10042ed0>
>>> f = fib
>>> f(100)
0 1 1 2 3 5 8 13 21 34 55 89

Coming from other languages, you might object that fib is not a function but a procedure(程序) since it doesn’t return a value. In fact, even functions without a return statement do return a value, albeit(尽管) a rather boring one. This value is called None (it’s a built-in name). Writing the value None is normally suppressed by the interpreter if it would be the only value written. You can see it if you really want to using print():

>>>

>>> fib(0)
>>> print(fib(0))
None

It is simple to write a function that returns a list of the numbers of the Fibonacci series, instead of printing it:

>>>

>>> def fib2(n):  # return Fibonacci series up to n
...     """Return a list containing the Fibonacci series up to n."""
...     result = []
...     a, b = 0, 1
...     while a < n:
...         result.append(a)    # see below
...         a, b = b, a+b
...     return result
...
>>> f100 = fib2(100)    # call it
>>> f100                # write the result
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates(演示) some new Python features:

  • The return statement returns with a value from a function. return without an expression argument returns None. Falling off the end of a function also returns None.
  • The statement result.append(a) calls a method of the list object result. A method is a function that ‘belongs’ to an object and is named obj.methodname, where obj is some object (this may be an expression), and methodname is the name of a method that is defined by the object’s type. Different types define different methods. Methods of different types may have the same name without causing ambiguity(歧义). (It is possible to define your own object types and methods, using classes, see Classes) The method append() shown in the example is defined for list objects; it adds a new element at the end of the list. In this example it is equivalent to result = result + [a], but more efficient.

4.7. More on Defining Functions

It is also possible to define functions with a variable number of arguments. There are three forms, which can be combined.

4.7.1. Default Argument Values

The most useful form is to specify(指定) a default value for one or more arguments. This creates a function that can be called with fewer arguments than it is defined to allow. For example:

def ask_ok(prompt, retries=4, reminder='Please try again!'):
    while True:
        ok = input(prompt)
        if ok in ('y', 'ye', 'yes'):
            return True
        if ok in ('n', 'no', 'nop', 'nope'):
            return False
        retries = retries - 1
        if retries < 0:
            raise ValueError('invalid user response')
        print(reminder)

This function can be called in several ways:

  • giving only the mandatory argument(强制参数): ask_ok('Do you really want to quit?')
  • giving one of the optional arguments: ask_ok('OK to overwrite the file?', 2)
  • or even giving all arguments: ask_ok('OK to overwrite the file?', 2, 'Come on, only yes or no!')

This example also introduces the in keyword. This tests whether or not a sequence contains a certain value.

The default values are evaluated at the point of function definition in the defining scope, so that

i = 5

def f(arg=i):
    print(arg)

i = 6
f()

will print 5.

Important(重要) warning: The default value is evaluated only once(默认值仅计算一次). This makes a difference when the default is a mutable object(易变的对象) such as a list, dictionary, or instances of most classes. For example, the following function accumulates(计算) the arguments passed to it on subsequent calls(随后的调用):

def f(a, L=[]):
    L.append(a)
    return L

print(f(1))
print(f(2))
print(f(3))

 

 

 

 

 

This will print

[1]
[1, 2]
[1, 2, 3]

If you don’t want the default to be shared between subsequent calls, you can write the function like this instead:

def f(a, L=None):
    if L is None:
        L = []
    L.append(a)
    return L

4.7.2. Keyword Arguments

Functions can also be called using keyword arguments of the form kwarg=value. For instance, the following function:

def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):
    print("-- This parrot wouldn't", action, end=' ')
    print("if you put", voltage, "volts through it.")
    print("-- Lovely plumage, the", type)
    print("-- It's", state, "!")

accepts one required argument (voltage) and three optional arguments (stateaction, and type). This function can be called in any of the following ways:

parrot(1000)                                          # 1 positional argument
parrot(voltage=1000)                                  # 1 keyword argument
parrot(voltage=1000000, action='VOOOOOM')             # 2 keyword arguments
parrot(action='VOOOOOM', voltage=1000000)             # 2 keyword arguments
parrot('a million', 'bereft of life', 'jump')         # 3 positional arguments
parrot('a thousand', state='pushing up the daisies')  # 1 positional, 1 keyword

but all the following calls would be invalid:

parrot()                     # required argument missing
parrot(voltage=5.0, 'dead')  # non-keyword argument after a keyword argument
parrot(110, voltage=220)     # duplicate value for the same argument
parrot(actor='John Cleese')  # unknown keyword argument

In a function call, keyword arguments must follow positional arguments. All the keyword arguments passed must match one of the arguments accepted by the function (e.g. actor is not a valid argument for the parrot function), and their order is not important. This also includes non-optional arguments (e.g. parrot(voltage=1000) is valid too). No argument may receive a value more than once. Here’s an example that fails due to this restriction:

>>>

>>> def function(a):
...     pass
...
>>> function(0, a=0)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: function() got multiple values for keyword argument 'a'

When a final formal parameter of the form **name is present, it receives a dictionary (see Mapping Types — dict) containing all keyword arguments except for those corresponding to a formal parameter. This may be combined with a formal parameter of the form *name (described in the next subsection) which receives a tuple containing the positional arguments beyond the formal parameter list. (*name must occur before **name.) For example, if we define a function like this:

def cheeseshop(kind, *arguments, **keywords):
    print("-- Do you have any", kind, "?")
    print("-- I'm sorry, we're all out of", kind)
    for arg in arguments:
        print(arg)
    print("-" * 40)
    for kw in keywords:
        print(kw, ":", keywords[kw])

It could be called like this:

cheeseshop("Limburger", "It's very runny, sir.",
           "It's really very, VERY runny, sir.",
           shopkeeper="Michael Palin",
           client="John Cleese",
           sketch="Cheese Shop Sketch")

and of course it would print:

-- Do you have any Limburger ?
-- I'm sorry, we're all out of Limburger
It's very runny, sir.
It's really very, VERY runny, sir.
----------------------------------------
shopkeeper : Michael Palin
client : John Cleese
sketch : Cheese Shop Sketch

Note that the order in which the keyword arguments are printed is guaranteed to match the order in which they were provided in the function call.

4.7.3. Arbitrary Argument Lists

Finally, the least frequently used option is to specify that a function can be called with an arbitrary number of arguments. These arguments will be wrapped up in a tuple (see Tuples and Sequences). Before the variable number of arguments, zero or more normal arguments may occur.

def write_multiple_items(file, separator, *args):
    file.write(separator.join(args))

Normally, these variadic arguments will be last in the list of formal parameters, because they scoop up all remaining input arguments that are passed to the function. Any formal parameters which occur after the *argsparameter are ‘keyword-only’ arguments, meaning that they can only be used as keywords rather than positional arguments.

>>>

>>> def concat(*args, sep="/"):
...     return sep.join(args)
...
>>> concat("earth", "mars", "venus")
'earth/mars/venus'
>>> concat("earth", "mars", "venus", sep=".")
'earth.mars.venus'

4.7.4. Unpacking Argument Lists

The reverse situation occurs when the arguments are already in a list or tuple but need to be unpacked for a function call requiring separate positional arguments. For instance, the built-in range() function expects separatestart and stop arguments. If they are not available separately, write the function call with the *-operator to unpack the arguments out of a list or tuple:

>>>

>>> list(range(3, 6))            # normal call with separate arguments
[3, 4, 5]
>>> args = [3, 6]
>>> list(range(*args))            # call with arguments unpacked from a list
[3, 4, 5]

In the same fashion, dictionaries can deliver keyword arguments with the **-operator:

>>>

>>> def parrot(voltage, state='a stiff', action='voom'):
...     print("-- This parrot wouldn't", action, end=' ')
...     print("if you put", voltage, "volts through it.", end=' ')
...     print("E's", state, "!")
...
>>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"}
>>> parrot(**d)
-- This parrot wouldn't VOOM if you put four million volts through it. E's bleedin' demised !

4.7.5. Lambda Expressions

Small anonymous functions can be created with the lambda keyword. This function returns the sum of its two arguments: lambda a, b: a+b. Lambda functions can be used wherever function objects are required. They are syntactically restricted to a single expression. Semantically, they are just syntactic sugar for a normal function definition. Like nested function definitions, lambda functions can reference variables from the containing scope:

>>>

>>> def make_incrementor(n):
...     return lambda x: x + n
...
>>> f = make_incrementor(42)
>>> f(0)
42
>>> f(1)
43

The above example uses a lambda expression to return a function. Another use is to pass a small function as an argument:

>>>

>>> pairs = [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')]
>>> pairs.sort(key=lambda pair: pair[1])
>>> pairs
[(4, 'four'), (1, 'one'), (3, 'three'), (2, 'two')]

4.7.6. Documentation Strings

Here are some conventions(约定) about the content(内容) and formatting (形式)of documentation strings.

The first line should always be a short, concise(简洁) summary(概述) of the object’s purpose. For brevity,(为简洁期间) it ishould not explicitly state(明确陈述) the object’s name or type, since these are available by other means (except if the name happens to be a verb describing a function’s operation). This line should begin with a capital letter and end with a period.

第一行应始终是对象目的的简短(简洁)摘要(概述)。 为简洁起见,(明确陈述)不应明确说明对象的名称或类型,因为这些可通过其他方式获得(除非名称恰好是描述函数操作的动词)。 该行应以大写字母开头,以句点结尾。

If there are more lines in the documentation string, the second line should be blank, visually separating the summary from the rest of the description. The following lines should be one or more paragraphs describing the object’s calling conventions, its side effects, etc.

如果文档字符串中有更多行,则第二行应为空白,从而在视觉上将摘要与其余描述分开。 以下行应该是一个或多个段落,描述对象的调用约定,其副作用等。

The Python parser does not strip indentation from multi-line string literals in Python, so tools that process documentation have to strip indentation if desired. This is done using the following convention. The first non-blank line after the first line of the string determines the amount of indentation for the entire documentation string. (We can’t use the first line since it is generally adjacent to the string’s opening quotes so its indentation is not apparent in the string literal.) Whitespace “equivalent” to this indentation is then stripped from the start of all lines of the string. Lines that are indented less should not occur, but if they occur all their leading whitespace should be stripped. Equivalence of whitespace should be tested after expansion of tabs (to 8 spaces, normally).

 

Python解析器不会从Python中删除多行字符串文字的缩进,因此处理文档的工具必须在需要时删除缩进。 这是使用以下约定完成的。 字符串第一行之后的第一个非空行确定整个文档字符串的缩进量。 (我们不能使用第一行,因为它通常与字符串的开头引号相邻,因此它的缩进在字符串文字中不明显。)然后从字符串的所有行的开头剥离与该缩进“等效”的空格。。 缩进的行不应该出现,但是如果它们出现,则应该剥离它们的所有前导空格。 应在扩展标签后测试空白的等效性(通常为8个空格)。

Here is an example of a multi-line docstring:

>>>

>>> def my_function():
...     """Do nothing, but document it.
...
...     No, really, it doesn't do anything.
...     """
...     pass
...
>>> print(my_function.__doc__)
Do nothing, but document it.

    No, really, it doesn't do anything.

4.7.7. Function Annotations(函数注释,或者功能注释)

Function annotations are completely optional metadata(元数据) information about the types used by user-defined functions (see PEP 3107 and PEP 484 for more information).

函数注释是关于用户定义函数使用的类型的完全可选元数据(元数据)(有关更多信息,请参阅PEP 3107和PEP 484)。

Annotations are stored in the __annotations__ attribute of the function as a dictionary and have no effect on any other part of the function. Parameter annotations are defined by a colon after the parameter name, followed by an expression evaluating to the value of the annotation. Return annotations are defined by a literal ->, followed by an expression, between the parameter list and the colon denoting the end of the def statement. The following example has a positional argument, a keyword argument, and the return value annotated:

注释作为字典存储在函数的__annotations__属性中,对函数的任何其他部分都没有影响。 参数注释由参数名称后面的冒号定义,后跟一个表达式,用于评估注释的值。 返回注释由文字 - >后跟一个表达式定义,参数列表和冒号表示def语句的结尾。 以下示例具有位置参数,关键字参数和注释的返回值:

>>>

>>> def f(ham: str, eggs: str = 'eggs') -> str:
...     print("Annotations:", f.__annotations__)
...     print("Arguments:", ham, eggs)
...     return ham + ' and ' + eggs
...
>>> f('spam')
Annotations: {'ham': <class 'str'>, 'return': <class 'str'>, 'eggs': <class 'str'>}
Arguments: spam eggs
'spam and eggs'

4.8. Intermezzo: Coding Style 间奏曲编程风格

Now that you are about to write longer, more complex pieces of Python, it is a good time to talk about coding style. Most languages can be written (or more concise, formatted) in different styles; some are more readable than others. Making it easy for others to read your code is always a good idea, and adopting a nice coding style helps tremendously for that.

现在您要编写更长,更复杂的Python,现在是讨论编码风格的好时机。 大多数语言都可以用不同的风格编写(或更简洁,格式化); 有些比其他人更具可读性。 让其他人轻松阅读您的代码总是一个好主意,采用一种好的编码风格对此有很大帮助。

For Python, PEP 8 has emerged as the style guide that most projects adhere to; it promotes a very readable and eye-pleasing coding style. Every Python developer should read it at some point; here are the most important points extracted for you:

对于Python,PEP 8已经成为大多数项目所遵循的风格指南; 它促进了一种非常易读且令人赏心悦目的编码风格。 每个Python开发人员都应该在某个时候阅读它; 以下是为您提取的最重要的要点:

  • Use 4-space indentation, and no tabs. 使用4空格缩进,没有标签。

    4 spaces are a good compromise between small indentation (allows greater nesting depth) and large indentation (easier to read). Tabs introduce confusion, and are best left out.

  • 4个空格是小压痕(允许更大的嵌套深度)和大压痕(更容易阅读)之间的良好折衷。 标签引入混淆,最好省略。

  • Wrap lines so that they don’t exceed 79 characters. 换行,使其不超过79个字符。

    This helps users with small displays and makes it possible to have several code files side-by-side on larger displays.这有助于用户使用小型显示器,并且可以在较大的显示器上并排放置多个代码文件。

  • Use blank lines to separate functions and classes, and larger blocks of code inside functions.使用空行分隔函数和类,以及函数内的较大代码块。

  • When possible, put comments on a line of their own. 如果可能,将评论放在他们自己的一行上。

  • Use docstrings. 使用docstrings。

  • Use spaces around operators and after commas, but not directly inside bracketing constructs: a = f(1, 2)+ g(3, 4).在操作符周围和逗号后面使用空格,但不能直接在包围结构内:a = f(1,2)+ g(3,4)。

  • Name your classes and functions consistently; the convention is to use CamelCase for classes and lower_case_with_underscores for functions and methods. Always use self as the name for the first method argument (see A First Look at Classes for more on classes and methods).

  • 一致地命名您的类和函数; 惯例是将CamelCase用于类,使用lower_case_with_underscores用于函数和方法。 始终使用self作为第一个方法参数的名称(有关类和方法的更多信息,请参阅类的初步查看)。

  • Don’t use fancy encodings if your code is meant to be used in international environments. Python’s default, UTF-8, or even plain ASCII work best in any case.

  • Likewise, don’t use non-ASCII characters in identifiers if there is only the slightest chance people speaking a different language will read or maintain the code.

  • 如果您的代码旨在用于国际环境,请不要使用花哨的编码。 Python的默认值,UTF-8甚至纯ASCII在任何情况下都能最好地工作。

    同样,如果只有最轻微的机会,说不同语言的人会阅读或维护代码,请不要在标识符中使用非ASCII字符。

Footnotes

[1] Actually, call by object reference would be a better description, since if a mutable object is passed, the caller will see any changes the callee makes to it (items inserted into a list).
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页