Mysql数据库-面试题

9 篇文章 0 订阅

1. 数据库的三范式是什么?

第一范式:强调的是列的原子性,即数据库表的每一列都是不可分割的原子数据项。

第二范式:表中必须有主键,其他属性依赖主键。

                   第二范式是在第一范式基础上建立的。

                   第二范式有两个重点:(1)表中必须有主键;(2)其他非主属性必须完全依赖主键,不能只依赖主键的一部分(主要针对联合主键而言)。

第三范式:除主键外的字段都完全直接依赖,不能是传递依赖。

                  基于第二范式的, 但是不能是传递依赖.

                  即不能存在:非主键列 A 依赖于非主键列 B,非主键列 B 依赖于主键的情况

2. 一张自增表里面总共有 7 条数据,删除了最后 2 条数据,重启 MySQL 数据库,又插入了一条数据,此时 id 是几?

  • 表类型如果是 MyISAM ,那 id 就是 8。
  • 表类型如果是 InnoDB,那 id 就是 6。

InnoDB 表只会把自增主键的最大 id 记录在内存中,所以重启之后会导致最大 id 丢失。

3. 说一下 MySQL 常用的引擎?

  • InnoDB 引擎:InnoDB 引擎提供了对数据库 acid 事务的支持,并且还提供了行级锁和外键的约束,它的设计的目标就是处理大数据容量的数据库系统。MySQL 运行的时候,InnoDB 会在内存中建立缓冲池,用于缓冲数据和索引。

  • 但是该引擎是不支持全文搜索,同时启动也比较的慢,它是不会保存表的行数的,所以当进行 select count(*) from table 指令的时候,需要进行扫描全表。

  • 由于锁的粒度小,写操作是不会锁定全表的,所以在并发度较高的场景下使用会提升效率的。

  • MyIASM 引擎:MySQL 的默认引擎,但不提供事务的支持,也不支持行级锁和外键。因此当执行插入和更新语句时,即执行写操作的时候需要锁定这个表,所以会导致效率会降低。

  • 不过和 InnoDB 不同的是,MyIASM 引擎是保存了表的行数,于是当进行 select count(*) from table 语句时,可以直接的读取已经保存的值而不需要进行扫描全表。

  • 所以,如果表的读操作远远多于写操作时,并且不需要事务的支持的,可以将 MyIASM 作为数据库引擎的首选。

4. 说一下 ACID 是什么?

  • Atomicity(原子性):一个事务(transaction)中的所有操作,或者全部完成,或者全部不完成,不会结束在中间某个环节。事务在执行过程中发生错误,会被恢复(Rollback)到事务开始前的状态,就像这个事务从来没有执行过一样。即,事务不可分割、不可约简。
  • Consistency(一致性):在事务开始之前和事务结束以后,数据库的完整性没有被破坏。这表示写入的资料必须完全符合所有的预设约束、触发器、级联回滚等。
  • Isolation(隔离性):数据库允许多个并发事务同时对其数据进行读写和修改的能力,隔离性可以防止多个事务并发执行时由于交叉执行而导致数据的不一致。事务隔离分为不同级别,包括读未提交(Read uncommitted)、读提交(read committed)、可重复读(repeatable read)和串行化(Serializable)。
  • Durability(持久性):事务处理结束后,对数据的修改就是永久的,即便系统故障也不会丢失。

5. 说一下数据库的事务隔离?

MySQL 的事务隔离是在 MySQL. ini 配置文件里添加的,在文件的最后添加:

transaction-isolation = REPEATABLE-READ

可用的配置值:READ-UNCOMMITTED、READ-COMMITTED、REPEATABLE-READ、SERIALIZABLE。

  • READ-UNCOMMITTED:未提交读,最低隔离级别、事务未提交前,就可被其他事务读取(会出现幻读、脏读、不可重复读)。
  • READ-COMMITTED:提交读,一个事务提交后才能被其他事务读取到(会造成幻读、不可重复读)。
  • REPEATABLE-READ:可重复读,默认级别,保证多次读取同一个数据时,其值都和事务开始时候的内容是一致,禁止读取到别的事务未提交的数据(会造成幻读)。
  • SERIALIZABLE:序列化,代价最高最可靠的隔离级别,该隔离级别能防止脏读、不可重复读、幻读。

①. 如果不考虑隔离性,事务存在3种并发访问问题 
1、脏读:B事务读取到了A事务尚未提交的数据 

2、幻读/虚读:一个事务中两次读取的数据的数量不一致 
3、不可重复读:一个事务中两次读取的数据的内容不一致 

②. 数据库的隔离级别 
1、read uncommitted : 读未提交 :哪个问题都不能解决 
2、read committed:读已提交 :可以解决脏读 —- oracle默认的 
3、repeatable read:可重复读:可以解决脏读和不可重复读 —mysql默认的 
4、serializable:串行化:可以解决脏读不可重复读和虚读—相当于锁表 

6. 说一下 MySQL 的行锁和表锁?

MyISAM 只支持表锁,InnoDB 支持表锁和行锁,默认为行锁。

  • 行级锁:开销大,加锁慢,会出现死锁。锁力度小,发生锁冲突的概率小,并发度最高。
  • 表级锁:开销小,加锁快,不会出现死锁。锁定粒度大,发生锁冲突的概率最高,并发量最低。

7. 说一下乐观锁和悲观锁?

  • 乐观锁:每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在提交更新的时候会判断一下在此期间别人有没有去更新这个数据。
  • 悲观锁:每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻止,直到这个锁被释放。

数据库的乐观锁需要自己实现,在表里面添加一个 version 字段,每次修改成功值加 1,这样每次修改的时候先对比一下,自己拥有的 version 和数据库现在的 version 是否一致,如果不一致就不修改,这样就实现了乐观锁。

8. MySQL 问题排查都有哪些手段?

  • 使用 show processlist 命令查看当前所有连接信息。
  • 使用 explain 命令查询 SQL 语句执行计划。
  • 开启慢查询日志,查看慢查询的 SQL。

9. 如何做 MySQL 的性能优化?

  • 为搜索字段创建索引。
  • 避免使用 select *,列出需要查询的字段。
  • 垂直分割分表。
  • 选择正确的存储引擎。

10. 解释一下什么是索引?(重中之重)

首先Mysql的基本存储结构是页(记录都存在页里边):

  • 各个数据页可以组成一个双向链表;

  • 而每个数据页中的记录又可以组成一个单向链表;

  • 每个数据页都会为存储在它里边儿的记录生成一个页目录,在通过主键查找某条记录的时候可以在页目录中使用二分法快速定位到对应的槽,然后再遍历该槽对应分组中的记录即可快速找到指定的记录;

  • 以其他列(非主键)作为搜索条件:只能从最小记录开始依次遍历单链表中的每条记录。

所以说,如果我们写select * from user where username = 'Java3y'这样没有进行任何优化的sql语句,默认会这样做:

  • 定位到记录所在的页

  • 需要遍历双向链表,找到所在的页

  • 从所在的页内中查找相应的记录

  • 由于不是根据主键查询,只能遍历所在页的单链表了

很明显,在数据量很大的情况下这样查找会很慢!

11. 为什么索引提高检索速度?

索引做了些什么可以让我们查询加快速度呢?

其实就是将无序的数据变成有序(相对):

要找到id为8的记录简要步骤:

很明显的是:没有用索引我们是需要遍历双向链表来定位对应的页,现在通过"目录"就可以很快地定位到对应的页上了!

其实底层结构就是B+树,B+树作为树的一种实现,能够让我们很快地查找出对应的记录。

12. 为什么索引降低增删改的速度?

如果一棵普通的树在极端的情况下,是能退化成链表的(树的优点就不复存在了)

B+树是平衡树的一种,是不会退化成链表的,树的高度都是相对比较低的(基本符合矮矮胖胖(均衡)的结构)【这样一来我们检索的时间复杂度就是O(logn)】!建立索引实际上就是建立一颗B+树。

B+树是一颗平衡树,如果我们对这颗树增删改的话,那肯定会破坏它的原有结构;

要维持平衡树,就必须做额外的工作。正因为这些额外的工作开销,导致索引会降低增删改的速度;

13、哈希索引

除了B+树之外,还有一种常见的是哈希索引。

哈希索引就是采用一定的哈希算法,把键值换算成新的哈希值,检索时不需要类似B+树那样从根节点到叶子节点逐级查找,只需一次哈希算法即可立刻定位到相应的位置,速度非常快。

  • 本质上就是把键值换算成新的哈希值,根据这个哈希值来定位。

看起来哈希索引很牛逼啊,但其实哈希索引有好几个局限(根据他本质的原理可得):

  • 哈希索引也没办法利用索引完成排序;

  • 不支持最左匹配原则;

  • 在有大量重复键值情况下,哈希索引的效率也是极低的---->哈希碰撞问题;

  • 不支持范围查询;

14、InnoDB支持哈希索引吗?

主流的还是使用B+树索引比较多,对于哈希索引,InnoDB是自适应哈希索引的(hash索引的创建由InnoDB存储引擎引擎自动优化创建,我们干预不了)!

15. 聚集和非聚集索引

简单概括:

  • 聚集索引就是以主键创建的索引;

  • 非聚集索引就是以非主键创建的索引;

区别:

  • 聚集索引在叶子节点存储的是表中的数据;

  • 非聚集索引在叶子节点存储的是主键和索引列;

  • 使用非聚集索引查询出数据时,拿到叶子上的主键再去查到想要查找的数据。(拿到主键再查找这个过程叫做回表)

非聚集索引也叫做二级索引,不用纠结那么多名词,将其等价就行了~

       非聚集索引在建立的时候也未必是单列的,可以多个列来创建索引。此时就涉及到了哪个列会走索引,哪个列不走索引的问题了(最左匹配原则-->后面有说)

  • 创建多个单列(非聚集)索引的时候,会生成多个索引树(所以过多创建索引会占用磁盘空间)

在创建多列索引中也涉及到了一种特殊的索引-->覆盖索引

  • 我们前面知道了,如果不是聚集索引,叶子节点存储的是主键+列值

  • 最终还是要“回表”,也就是要通过主键再查找一次。这样就会比较慢

  • 覆盖索引就是把要查询出的列和索引是对应的,不做回表操作!

比如说:

  • 现在我创建了索引(username,age),在查询数据的时候:select username , age from user where username = 'Java3y' and age = 20。

  • 很明显地知道,我们上边的查询是走索引的,并且,要查询出的列在叶子节点都存在!所以,就不用回表了~

  • 所以,能使用覆盖索引就尽量使用吧~

16、索引最左匹配原则

最左匹配原则:

  • 索引可以简单如一个列(a),也可以复杂如多个列(a, b, c, d),即联合索引。

  • 如果是联合索引,那么key也由多个列组成,同时,索引只能用于查找key是否存在(相等),遇到范围查询(>、<、between、like左匹配)等就不能进一步匹配了,后续退化为线性查找。

  • 因此,列的排列顺序决定了可命中索引的列数。

例子:

  • 如有索引(a, b, c, d),查询条件a = 1 and b = 2 and c > 3 and d = 4,则会在每个节点依次命中a、b、c,无法命中d。(很简单:索引命中只能是相等的情况,不能是范围匹配)

17、=、in自动优化顺序

不需要考虑=、in等的顺序,mysql会自动优化这些条件的顺序,以匹配尽可能多的索引列。

例子:

  • 如有索引(a, b, c, d),查询条件c > 3 and b = 2 and a = 1 and d < 4与a = 1 and c > 3 and b = 2 and d < 4等顺序都是可以的,MySQL会自动优化为a = 1 and b = 2 and c > 3 and d < 4,依次命中a、b、c。

18、索引总结

索引在数据库中是一个非常重要的知识点!上面谈的其实就是索引最基本的东西,要创建出好的索引要顾及到很多的方面:

  • 1,最左前缀匹配原则。这是非常重要、非常重要、非常重要(重要的事情说三遍)的原则,MySQL会一直向右匹配直到遇到范围查询(>,<,BETWEEN,LIKE)就停止匹配。

  • 3,尽量选择区分度高的列作为索引,区分度的公式是 COUNT(DISTINCT col) / COUNT(*)。表示字段不重复的比率,比率越大我们扫描的记录数就越少。

  • 4,索引列不能参与计算,尽量保持列“干净”。比如,FROM_UNIXTIME(create_time) = '2016-06-06' 就不能使用索引,原因很简单,B+树中存储的都是数据表中的字段值,但是进行检索时,需要把所有元素都应用函数才能比较,显然这样的代价太大。所以语句要写成 : create_time = UNIX_TIMESTAMP('2016-06-06')。

  • 5,尽可能的扩展索引,不要新建立索引。比如表中已经有了a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可。

  • 6,单个多列组合索引和多个单列索引的检索查询效果不同,因为在执行SQL时,MySQL只能使用一个索引,会从多个单列索引中选择一个限制最为严格的索引。

19.数据库常见死锁原因及处理

 数据库是一个多用户使用的共享资源,当多个用户并发地存取数据时,在数据库中就会产生多个事务同时存取同一数据的情况。若对并发操作不加控制就可能会读取和存储不正确的数据,破坏数据库的一致性。

加锁是实现数据库并发控制的一个非常重要的技术。在实际应用中经常会遇到的与锁相关的异常情况,当两个事务需要一组有冲突的锁,而不能将事务继续下去的话,就会出现死锁,严重影响应用的正常执行。 
  在数据库中有两种基本的锁类型:排它锁(Exclusive Locks,即X锁)和共享锁(Share Locks,即S锁)。当数据对象被加上排它锁时,其他的事务不能对它读取和修改。加了共享锁的数据对象可以被其他事务读取,但不能修改。数据库利用这两种基本的锁类型来对数据库的事务进行并发控制。 
  下面总结下这两种锁造成的常见的死锁情况与解决方案:

一. 事务之间对资源访问顺序的交替

  1. 出现原因: 
    一个用户A 访问表A(锁住了表A),然后又访问表B;另一个用户B 访问表B(锁住了表B),然后企图访问表A;这时用户A由于用户B已经锁住表B,它必须等待用户B释放表B才能继续,同样用户B要等用户A释放表A才能继续,这就死锁就产生了。
  2. 解决方法: 
    这种死锁比较常见,是由于程序的BUG产生的,除了调整的程序的逻辑没有其它的办法。仔细分析程序的逻辑,对于数据库的多表操作时,尽量按照相同的顺序进行处理,尽量避免同时锁定两个资源,如操作A和B两张表时,总是按先A后B的顺序处理, 必须同时锁定两个资源时,要保证在任何时刻都应该按照相同的顺序来锁定资源。

二. 并发修改同一记录

  1. 出现原因: 
     用户A查询一条纪录,然后修改该条纪录;这时用户B修改该条纪录,这时用户A的事务里锁的性质由查询的共享锁企图上升到独占锁,而用户B里的独占锁由于A有共享锁存在所以必须等A释放掉共享锁,而A由于B的独占锁而无法上升的独占锁也就不可能释放共享锁,于是出现了死锁。这种死锁由于比较隐蔽,但在稍大点的项目中经常发生。 
     一般更新模式由一个事务组成,此事务读取记录,获取资源(页或行)的共享 (S) 锁,然后修改行,此操作要求锁转换为排它 (X) 锁。如果两个事务获得了资源上的共享模式锁,然后试图同时更新数据,则一个事务尝试将锁转换为排它 (X) 锁。共享模式到排它锁的转换必须等待一段时间,因为一个事务的排它锁与其它事务的共享模式锁不兼容;发生锁等待。第二个事务试图获取排它 (X) 锁以进行更新。由于两个事务都要转换为排它 (X) 锁,并且每个事务都等待另一个事务释放共享模式锁,因此发生死锁。
  2. 解决方法: 
    a. 使用乐观锁进行控制。乐观锁大多是基于数据版本(Version)记录机制实现。即为数据增加一个版本标识,在基于数据库表的版本解决方案中,一般是通过为数据库表增加一个“version”字段来实现。读取出数据时,将此版本号一同读出,之后更新时,对此版本号加一。此时,将提交数据的版本数据与数据库表对应记录的当前版本信息进行比对,如果提交的数据版本号大于数据库表当前版本号,则予以更新,否则认为是过期数据。乐观锁机制避免了长事务中的数据库加锁开销(用户A和用户B操作过程中,都没有对数据库数据加锁),大大提升了大并发量下的系统整体性能表现。Hibernate 在其数据访问引擎中内置了乐观锁实现。需要注意的是,由于乐观锁机制是在我们的系统中实现,来自外部系统的用户更新操作不受我们系统的控制,因此可能会造成脏数据被更新到数据库中。 
    b. 使用悲观锁进行控制。悲观锁大多数情况下依靠数据库的锁机制实现,如Oracle的Select … for update语句,以保证操作最大程度的独占性。但随之而来的就是数据库性能的大量开销,特别是对长事务而言,这样的开销往往无法承受。如一个金融系统,当某个操作员读取用户的数据,并在读出的用户数据的基础上进行修改时(如更改用户账户余额),如果采用悲观锁机制,也就意味着整个操作过程中(从操作员读出数据、开始修改直至提交修改结果的全过程,甚至还包括操作员中途去煮咖啡的时间),数据库记录始终处于加锁状态,可以想见,如果面对成百上千个并发,这样的情况将导致灾难性的后果。所以,采用悲观锁进行控制时一定要考虑清楚。 
    c. SqlServer可支持更新锁 
    为解决死锁,SqlServer引入更新锁,它有如下特征: 
    (1) 加锁的条件:当一个事务执行update语句时,数据库系统会先为事务分配一把更新锁。 
    (2) 解锁的条件:当读取数据完毕,执行更新操作时,会把更新锁升级为独占锁。 
    (3) 与其他锁的兼容性:更新锁与共享锁是兼容的,也就是说,一个资源可以同时放置更新锁和共享锁,但是最多放置一把更新锁。这样,当多个事务更新相同的数据时,只有一个事务能获得更新锁,然后再把更新锁升级为独占锁,其他事务必须等到前一个事务结束后,才能获取得更新锁,这就避免了死锁。 
    (4) 并发性能:允许多个事务同时读锁定的资源,但不允许其他事务修改它。 
    例子如下:T1:
    begin tran
    select * from table(updlock) (加更新锁)
    update table set column1='hello'
    T2:
    begin tran
    select * from table(updlock)
    update table set column1='world'

更新锁的意思是:“我现在只想读,你们别人也可以读,但我将来可能会做更新操作,我已经获取了从共享锁(用来读)到排他锁(用来更新)的资格”。一个事物只能有一个更新锁获此资格。 
T1执行select,加更新锁。 
T2运行,准备加更新锁,但发现已经有一个更新锁在那儿了,只好等。 
当后来有user3、user4…需要查询table表中的数据时,并不会因为T1的select在执行就被阻塞,照样能查询,提高了效率。

三. 索引不当导致全表扫描

  1. 出现原因: 
    如果在事务中执行了一条不满足条件的语句,执行全表扫描,把行级锁上升为表级锁,多个这样的事务执行后,就很容易产生死锁和阻塞。类似的情况还有当表中的数据量非常庞大而索引建的过少或不合适的时候,使得经常发生全表扫描,最终应用系统会越来越慢,最终发生阻塞或死锁。
  2. 解决方法: 
    SQL语句中不要使用太复杂的关联多表的查询;使用“执行计划”对SQL语句进行分析,对于有全表扫描的SQL语句,建立相应的索引进行优化。

四.事务封锁范围大且相互等待

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值