目录
CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features
作者在论文中提出了一种新的数据增强的方法——CutMix(论文地址),论文源代码-Pytorch
摘要
区域的丢弃策略(Reginal dropout strategies)能够增强卷积神经网络分类器的性能。
优点: 该策略能够使得模型更有效的关注目标的明显部分,有好的泛化和目标定位能力。
缺点: 利用黑色像素或者随机噪声填充移除区域,这样的操作在训练过程中容易导致信息的缺失和无效性。
解决方法: 提出了CutMix——使用训练集中的图像填补移除区域。
Mixup、Cutout和CutMix三种数据增强方法
作者在论文中对比了三种数据增强的方法:Mixup,Cutout和CutMix在数据集中的性能。通过观察下图可以发现,CutMix在填充了训练集中的其他照片的同时,label也进行了相同比例转换。
CutMix
CutMix最大程度的利用了同一张图像上的两种不同图像信息。具有更好的分类性能和目标定位功能。
算法中涉及到的公式
对应的代码
整体算法:
for i, (input, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
input = input.cuda()
target = target