深度学习中的数据增强方法之CutMix

CutMix是一种创新的数据增强策略,旨在提高卷积神经网络的分类和定位能力。它结合了Mixup和Cutout的优点,通过从训练集中借用图像片段来替换被裁剪的区域,从而避免信息丢失。相较于Mixup和Cutout,CutMix表现出更强的分类和目标定位性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features

作者在论文中提出了一种新的数据增强的方法——CutMix论文地址),论文源代码-Pytorch

摘要

区域的丢弃策略(Reginal dropout strategies)能够增强卷积神经网络分类器的性能。
优点: 该策略能够使得模型更有效的关注目标的明显部分,有好的泛化和目标定位能力。
缺点: 利用黑色像素或者随机噪声填充移除区域,这样的操作在训练过程中容易导致信息的缺失和无效性。
解决方法: 提出了CutMix——使用训练集中的图像填补移除区域。

Mixup、Cutout和CutMix三种数据增强方法

作者在论文中对比了三种数据增强的方法:Mixup,Cutout和CutMix在数据集中的性能。通过观察下图可以发现,CutMix在填充了训练集中的其他照片的同时,label也进行了相同比例转换。
在这里插入图片描述

CutMix

CutMix最大程度的利用了同一张图像上的两种不同图像信息。具有更好的分类性能和目标定位功能。

算法中涉及到的公式

在这里插入图片描述
在这里插入图片描述

对应的代码

整体算法:

for i, (input, target) in enumerate(train_loader):
   # measure data loading time
   data_time.update(time.time() - end)
   input = input.cuda()
   target = target
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值