torch.sigmoid()、torch.nn.Sigmoid()和torch.nn.functional.sigmoid()三者之间的区别

本文探讨了PyTorch中的torch.sigmoid()、torch.nn.Sigmoid()和torch.nn.functional.sigmoid()三者,虽然功能相同,但在模型训练中使用场景有所不同。torch.sigmoid()直接调用,torch.nn.Sigmoid()作为类在模型初始化时使用,torch.nn.functional.sigmoid()则可在正向传播中直接应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在利用自定义损失函数进行损失计算的时候,需要使用到sigmoid函数。当在训练模型的时候,使用torch.nn.Sigmoid()对输出进行处理,但是提示__init__错误。我发现光sigmoid()就有三种调用的方式:torch.sigmoid(),torch.nn.Sigmoid()和torch.nn.functional.sigmoid()。

torch.sigmoid():

这是一个方法,包含了参数和返回值。
在这里插入图片描述

torch.nn.Sigmoid():

可以看到,这个是一个类。在定义模型的初始化方法中使用,需要在_init__中定义,然后在使用。
在这里插入图片描述

torch.nn.functional.sigmoid():

这其实是一个方法,可以直接在正向传播中使用,而不需要初始化。**在训练模型的过程中,也可以使用。**例如:
在这里插入图片描述
在这里插入图片描述

这三个sigmoid()实现的功能是一样的,没有区别。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值