1.部署单点es
1.1.创建网络
因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:
docker network create es-net
1.2.加载镜像
自己下载注意版本
docker load -i es.tar
docker load -i kibana .tar
1.3.运行
运行docker命令,部署单点es:
docker run -d \
--name es \
-e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
-e "discovery.type=single-node" \
-v es-data:/usr/share/elasticsearch/data \
-v es-plugins:/usr/share/elasticsearch/plugins \
--privileged \
--network es-net \
-p 9200:9200 \
-p 9300:9300 \
elasticsearch:7.12.1
命令解释:
-
-e "cluster.name=es-docker-cluster"
:设置集群名称 -
-e "http.host=0.0.0.0"
:监听的地址,可以外网访问 -
-e "ES_JAVA_OPTS=-Xms512m -Xmx512m"
:内存大小 -
-e "discovery.type=single-node"
:非集群模式 -
-v es-data:/usr/share/elasticsearch/data
:挂载逻辑卷,绑定es的数据目录 -
-v es-logs:/usr/share/elasticsearch/logs
:挂载逻辑卷,绑定es的日志目录 -
-v es-plugins:/usr/share/elasticsearch/plugins
:挂载逻辑卷,绑定es的插件目录 -
--privileged
:授予逻辑卷访问权 -
--network es-net
:加入一个名为es-net的网络中 -
-p 9200:9200
:端口映射配置
在浏览器中输入自己的IP+:9200即可看到elasticsearch的响应结果:
2.部署kibana
kibana可以给我们提供一个elasticsearch的可视化界面。
2.1.部署
运行docker命令,部署kibana
docker run -d \
--name kibana \
-e ELASTICSEARCH_HOSTS=http://es:9200 \
--network=es-net \
-p 5601:5601 \
kibana:7.12.1
-
--network es-net
:加入一个名为es-net的网络中,与elasticsearch在同一个网络中 -
-e ELASTICSEARCH_HOSTS=http://es:9200"
:设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch -
-p 5601:5601
:端口映射配置
在浏览器中输入自己的IP+:5601 即可看到结果
3.安装IK分词器
es自带的分词器无法对中文分词
# 测试
POST /_analyze
{
"analyzer": "standard",
"text": "好好学习"
}
#结果
{
"tokens" : [
{
"token" : "好",
"start_offset" : 0,
"end_offset" : 1,
"type" : "<IDEOGRAPHIC>",
"position" : 0
},
{
"token" : "好",
"start_offset" : 1,
"end_offset" : 2,
"type" : "<IDEOGRAPHIC>",
"position" : 1
},
{
"token" : "学",
"start_offset" : 2,
"end_offset" : 3,
"type" : "<IDEOGRAPHIC>",
"position" : 2
},
{
"token" : "习",
"start_offset" : 3,
"end_offset" : 4,
"type" : "<IDEOGRAPHIC>",
"position" : 3
}
]
}
3.1.在线安装ik插件
# 进入容器内部
docker exec -it es /bin/bash
# 在线下载并安装
./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip
#退出
exit
#重启容器
docker restart es
3.2.离线安装ik插件
安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:
docker volume inspect es-plugins
[
{
"CreatedAt": "2022-05-06T10:06:34+08:00",
"Driver": "local",
"Labels": null,
"Mountpoint": "/var/lib/docker/volumes/es-plugins/_data",
"Name": "es-plugins",
"Options": null,
"Scope": "local"
}
]
将分词器安装包解压并上传到插件数据卷中
# 重启容器
docker restart es
3.3.测试
IK分词器包含两种模式:
-
ik_smart
:最少切分 -
ik_max_word
:最细切分
GET /_analyze
{
"analyzer": "ik_max_word",
"text": "好好学习"
}
查看结果
4. 自动补全插件
效果:
4.1 拼音分词器
安装方法同上
测试:
默认拼音分词器不好用,需要自定义
POST /_analyze
{
"text": "如家酒店还不错",
"analyzer": "pinyin"
}
4.2 自定义分词器
elasticsearch中分词器(analyzer)的组成包含三部分:
-
character filters:在tokenizer之前对文本进行处理。例如删除字符、替换字符
-
tokenizer:将文本按照一定的规则切割成词条(term)。例如keyword,就是不分词;还有ik_smart
-
tokenizer filter:将tokenizer输出的词条做进一步处理。例如大小写转换、同义词处理、拼音处理等
步骤:
-
创建索引库时,在settings中配置,可以包含三部分
-
character filter
-
tokenizer
-
filter
-
自定义分词器和自动补全代码如下:
PUT /hotel
{
"settings":{
"analysis":{
"analyzer":{
"my_analyzer":{
"tokenizer":"ik_max_word",
"filter":"py"
},
"completion_analyzer":{
"tokenizer":"keyword",
"filter":"py"
}
},
"filter":{
"py":{
"type":"pinyin",
"keep_full_pinyin":false,
"keep_joined_full_pinyin":true,
"keep_original":true,
"limit_first_letter_length":16,
"remove_duplicated_term":true,
"none_chinese_pinyin_tokenize":false
}
}
}
},
"mappings": {
"properties": {
"id":{
"type": "keyword"
},
"name":{
"type": "text",
"analyzer": "my_analyzer",
"search_analyzer": "ik_max_word",
"copy_to": "all"
},
"address":{
"type":"keyword",
"index": false
},
"price":{
"type": "integer"
},
"brand":{
"type": "keyword",
"copy_to": "all"
},
"city":{
"type": "keyword",
"copy_to": "all"
},
"starName":{
"type": "keyword"
},
"business":{
"type": "keyword"
},
"location":{
"type": "geo_point"
},
"pic":{
"type": "keyword",
"index": false
},
"all":{
"type": "text",
"analyzer": "my_analyzer",
"search_analyzer": "ik_max_word"
},
"suggestion":{
"type":"completion",
"analyzer": "completion_analyzer",
"search_analyzer": "keyword"
}
}
}
}
结果:
5. 扩展词词典
打开IK分词器config目录:
在IKAnalyzer.cfg.xml配置文件内容添加:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>IK Analyzer 扩展配置</comment>
<!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典-->
<entry key="ext_dict">ext.dic</entry>
</properties>
新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改
好好学习
天天向上
……
重启elasticsearch
docker restart es
5.1停用词词典
在互联网项目中,在网络间传输的速度很快,所以很多敏感词语是不允许在网络上传递的,那么我们在搜索时也应该忽略当前词汇。
IKAnalyzer.cfg.xml配置文件内容添加:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>IK Analyzer 扩展配置</comment>
<!--用户可以在这里配置自己的扩展字典-->
<entry key="ext_dict">ext.dic</entry>
<!--用户可以在这里配置自己的扩展停止词字典 *** 添加停用词词典-->
<entry key="ext_stopwords">stopword.dic</entry>
</properties>
在 stopword.dic 添加停用词
XXX
重启elasticsearch
docker restart elasticsearch
docker restart kibana
注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑
6.部署es集群
部署es集群可以直接使用docker-compose来完成。
首先编写一个docker-compose文件,内容如下:
version: '2.2'
services:
es01:
image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
container_name: es01
environment:
- node.name=es01
- cluster.name=es-docker-cluster
- discovery.seed_hosts=es02,es03
- cluster.initial_master_nodes=es01,es02,es03
- bootstrap.memory_lock=true
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
ulimits:
memlock:
soft: -1
hard: -1
volumes:
- data01:/usr/share/elasticsearch/data
ports:
- 9201:9200
networks:
- elastic
es02:
image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
container_name: es02
environment:
- node.name=es02
- cluster.name=es-docker-cluster
- discovery.seed_hosts=es01,es03
- cluster.initial_master_nodes=es01,es02,es03
- bootstrap.memory_lock=true
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
ulimits:
memlock:
soft: -1
hard: -1
volumes:
- data02:/usr/share/elasticsearch/data
ports:
- 9202:9200
networks:
- elastic
es03:
image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
container_name: es03
environment:
- node.name=es03
- cluster.name=es-docker-cluster
- discovery.seed_hosts=es01,es02
- cluster.initial_master_nodes=es01,es02,es03
- bootstrap.memory_lock=true
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
ulimits:
memlock:
soft: -1
hard: -1
volumes:
- data03:/usr/share/elasticsearch/data
ports:
- 9203:9200
networks:
- elastic
volumes:
data01:
driver: local
data02:
driver: local
data03:
driver: local
networks:
elastic:
driver: bridge
然后启动
docker-compose up