Scrapy基础

Scrapy框架架构

什么是Scrapy框架

scrapy 是一个为了爬取网站数据,提取结构性数据而编写的应用框架,我们只需要实现少量代码,就能够快速的抓取到数据内容。Scrapy 使用了 Twisted(其主要对手是Tornado)异步网络框架来处理网络通讯,可以加快我们的下载速度,不用自己去实现异步框架,并且包含了各种中间件接口,可以灵活的完成各种需求。

Scrapy架构图

在这里插入图片描述各模块的功能:

  1. Scrapy Engine(引擎):Scrapy框架的核心部分。负责在Spider和ItemPipeline、Downloader、Scheduler中间通信、传递数据等。
  2. Spider(爬虫):发送需要爬取的链接给引擎,最后引擎把其他模块请求回来的数据再发送给爬虫,爬虫就去解析想要的数据。这个部分是我们开发者自己写的,因为要爬取哪些链接,页面中的哪些数据是我们需要的,都是由程序员自己决定。
  3. Scheduler(调度器):负责接收引擎发送过来的请求,并按照一定的方式进行排列和整理,负责调度请求的顺序等。
  4. Downloader(下载器):负责接收引擎传过来的下载请求,然后去网络上下载对应的数据再交还给引擎。
  5. Item Pipeline(管道):负责将Spider(爬虫)传递过来的数据进行保存。具体保存在哪里,应该看开发者自己的需求。
  6. Downloader Middlewares(下载中间件):可以扩展下载器和引擎之间通信功能的中间件。
  7. Spider Middlewares(Spider中间件):可以扩展引擎和爬虫之间通信功能的中间件。

在这里插入图片描述scrapy框架的工作流程:

1.首先Spiders(爬虫)将需要发送请求的url(requests)经ScrapyEngine(引擎)交给Scheduler(调度器)。

2.Scheduler(排序,入队)处理后,经ScrapyEngine,DownloaderMiddlewares(可选,主要有User_Agent, Proxy代理)交给Downloader。

3.Downloader向互联网发送请求,并接收下载响应(response)。将响应(response)经ScrapyEngine,SpiderMiddlewares(可选)交给Spiders。

4.Spiders处理response,提取数据并将数据经ScrapyEngine交给ItemPipeline保存(可以是本地,可以是数据库)。
提取url重新经ScrapyEngine交给Scheduler进行下一个循环。直到无Url请求程序停止结束。

Scrapy的安装

1.安装:通过pip install scrapy即可安装。
2. Scrapy官方文档:http://doc.scrapy.org/en/latest
3.Scrapy中文文档:http://scrapy-chs.readthedocs.io/zh_CN/latest/index.html

注意:
    在ubuntu上安装scrapy之前,需要先安装以下依赖:
    sudo apt-get install python3-dev build-essential python3-pip libxml2-dev libxslt1-dev zlib1g-dev libffi-dev libssl-dev,然后再通过pip install scrapy安装。
    如果在windows系统下,提示这个错误ModuleNotFoundError: No module named 'win32api',那么使用以下命令可以解决:pip install pypiwin32。

创建项目

要使用Scrapy框架创建项目,需要通过命令来创建。首先进入到你想把这个项目存放的目录。然后使用以下命令创建:

scrapy startproject [项目名称]

目录结构:
在这里插入图片描述

  1. items.py:用来存放爬虫爬取下来数据的模型。
  2. middlewares.py:用来存放各种中间件的文件。
  3. pipelines.py:用来将items的模型存储到本地磁盘中。
  4. settings.py:本爬虫的一些配置信息(比如请求头、多久发送一次请求、ip代理池等)。
  5. scrapy.cfg:项目的配置文件。
  6. spiders包:以后所有的爬虫,都是存放到这个里面。

爬取溴事百科

1.使用命令创建一个爬虫:

scrapy genspider choushibaikespider "qiushibaike.com"

创建了一个名字叫做choushibaikespider的爬虫,并且能爬取的网页只会限制在qiushibaike.com这个域名下。

choushibaikespider.py代码解析:

import scrapy


class ChoushibaikespiderSpider(scrapy.Spider):
    name = 'choushibaikespider'
    allowed_domains = ['qiushibaike.com']
    start_urls = ['http://qiushibaike.com/']

    def parse(self, response):
        pass

其实这些代码我们完全可以自己手动去写,而不用命令。只不过是不用命令,自己写这些代码比较麻烦。
要创建一个Spider,那么必须自定义一个类,继承自scrapy.Spider,然后在这个类中定义三个属性和一个方法。

(1) name:这个爬虫的名字,名字必须是唯一的。
(2) allow_domains:允许的域名。爬虫只会爬取这个域名下的网页,其他不是这个域名下的网页会被自动忽略。
(3). start_urls:爬虫从这个变量中的url开始。
(4). parse:引擎会把下载器下载回来的数据扔给爬虫解析,爬虫再把数据传给这个parse方法。这个是个固定的写法。这个方法的作用有两个,第一个是提取想要的数据。第二个是生成下一个请求的url。

2.修改settings.py代码:
在做一个爬虫之前,一定要记得修改setttings.py中的设置。两个地方是强烈建议设置的。

 1. ROBOTSTXT_OBEY设置为False。默认是True。即遵守机器协议,那么在爬虫的时候,scrapy首先去找robots.txt文件,如果没有找到。则直接停止爬取。
 2.DEFAULT_REQUEST_HEADERS添加User-Agent。这个也是告诉服务器,我这个请求是一个正常的请求,不是一个爬虫。

3.完成代码:
choushibaikespider.py
(1).response是一个scrapy.http.response.html.HtmlResponse对象。可以执行xpathcss语法来提取数据。
(2). 提取出来的数据,是一个Selector或者是一个SelectorList对象。如果想要获取其中的字符串。那么应该执行getall或者get方法。
(3). getall方法:获取Selector中的所有文本。返回的是一个列表。
(4). get方法:获取的是Selector中的第一个文本。返回的是一个str类型。
(5). 如果数据解析回来,要传给pipline处理。那么可以使用yield来返回。或者是收集所有的item。最后统一使用return返回。

# -*- coding: utf-8 -*-
import scrapy
from choushibaike.items import ChoushibaikeItem



class ChoushibaikespiderSpider(scrapy.Spider):
    name = 'choushibaikespider'
    allowed_domains = ['qiushibaike.com']
    start_urls = ['https://www.qiushibaike.com/text/page/1/']
    base_domain = 'https://www.qiushibaike.com'

    def parse(self, response): 
        # SelectorList
        duanzidivs=response.xpath("//div[@id='content-left']/div")
        for duanzidiv in duanzidivs:
            # Selector
            author = duanzidiv.xpath(".//h2/text()").get().strip()
            content = duanzidiv.xpath(".//div[@class='content']//text()").getall()
            content = "".join(content).strip()

            item = ChoushibaikeItem(author=author,content=content)
            yield  item
        next_url = response.xpath("//ul[@class='pagination']/li[last()]/a/@href").get()
        if not next_url:
            return
        else:
            yield scrapy.Request(self.base_domain+next_url,callback=self.parse)

items.py
(6).item:建议在items.py中定义好模型。以后就不要使用字典。

import scrapy
class ChoushibaikeItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    author = scrapy.Field()
    content = scrapy.Field()

pipelines.py
(7). pipeline:这个是专门用来保存数据的。其中有三个方法是会经常用的。
* open_spider(self,spider):当爬虫被打开的时候执行。
* process_item(self,item,spider):当爬虫有item传过来的时候会被调用。
* close_spider(self,spider):当爬虫关闭的时候会被调用。
要激活piplilne,应该在settings.py中,设置ITEM_PIPELINES。示例如下:
ITEM_PIPELINES = { 'choushibaike.pipelines.ChoushibaikePipeline': 300, }

import json


class ChoushibaikePipeline(object):
    def __init__(self):
        self.fp = open("duanzhi.js",'w',encoding="utf-8")

    def open_spider(self,spider):
        print("爬虫开始...")

    def process_item(self, item, spider):
        item_json = json.dumps(dict(item),ensure_ascii=False)
        self.fp.write(item_json)
        return item

    def close_spider(self,spider):
        self.fp.close()
        print("爬虫结束了.")

4.运行爬虫
运行scrapy项目。需要在终端,进入项目所在的路径,然后scrapy crawl [爬虫名字]即可运行指定的爬虫。如果不想每次都在命令行中运行,那么可以把这个命令写在一个文件中。以后就在pycharm中执行运行这个文件就可以了。比如现在新创建一个文件叫做start.py,然后在这个文件中填入以下代码:

from  scrapy import cmdline

cmdline.execute("scrapy crawl choushibaikespider".split())
JsonItemExporter和JsonLinesItemExporter

保存json数据的时候,可以使用这两个类,让操作变得得更简单。

  1. JsonItemExporter:这个是每次把数据添加到内存中。最后统一写入到磁盘中。好处是,存储的数据是一个满足json规则的数据。坏处是如果数据量比较大,那么比较耗内存。
from scrapy.exporters import JsonItemExporter

 class ChoushibaikePipeline(object):
     def __init__(self):
         self.fp = open("duanzi.json",'wb')
         self.exporter = JsonItemExporter(self.fp,ensure_ascii=False,encoding='utf-8')
         self.exporter.start_exporting()

     def open_spider(self,spider):
         print('爬虫开始了...')

     def process_item(self, item, spider):
         self.exporter.export_item(item)
         return item

     def close_spider(self,spider):
         self.exporter.finish_exporting()
         self.fp.close()
         print('爬虫结束了...')
  1. JsonLinesItemExporter:这个是每次调用export_item的时候就把这个item存储到硬盘中。坏处是每一个字典是一行,整个文件不是一个满足json格式的文件。好处是每次处理数据的时候就直接存储到了硬盘中,这样不会耗内存,数据也比较安全。
from scrapy.exporters import JsonLinesItemExporter
    class ChoushibaikePipeline(object):
        def __init__(self):
            self.fp = open("duanzi.json",'wb')
            self.exporter = JsonLinesItemExporter(self.fp,ensure_ascii=False,encoding='utf-8')

        def open_spider(self,spider):
            print('爬虫开始了...')

        def process_item(self, item, spider):
            self.exporter.export_item(item)
            return item

        def close_spider(self,spider):
            self.fp.close()
            print('爬虫结束了...')

注:参考网易课堂知了课程。

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页