专栏导读
-
🌸 欢迎来到Python办公自动化专栏—Python处理办公问题,解放您的双手
-
-
-
-
文章作者技术和水平有限,如果文中出现错误,希望大家能指正🙏
-
❤️ 欢迎各位佬关注! ❤️
方法1
-
缺点:
-
函数使用了 pandas 的 iterrows() 方法来遍历 DataFrame,这种方法在处理大型数据集时可能会相对较慢,因为它会创建 Series 对象,对内存和 CPU 都有一定的开销。
'''
@Project :测试
@File :test2.py
@IDE :PyCharm
@Author :一晌小贪欢(278865463@qq.com)
@Date :2024/3/25 21:46
'''
import pandas as pd
import time
def main():
t1 = time.time()
df = pd.read_excel('test.xlsx', engine='openpyxl')
for index, row in df.iterrows():
print(f"行号: {index}, 数据: {row.tolist()}")
t2 = time.time()
print(f"读取 Excel 文件并输出行号和数据耗时:{t2 - t1} 秒")
main()
方法2
-
特点:
-
使用了 enumerate(df.values.tolist()) 来遍历 DataFrame 的值,这种方式将整个 DataFrame 转换为 list,然后进行遍历。如果数据集非常大,一次性转换为 list 可能会导致内存占用较高,但遍历速度通常比 iterrows() 快。
def main2():
t1 = time.time()
df = pd.read_excel('test.xlsx', engine='openpyxl')
for index, row in enumerate(df.values.tolist()):
print(f"行号: {index}, 数据: {row}")
t2 = time.time()
print(f"读取 Excel 文件并输出行号和数据耗时:{t2 - t1} 秒")
main2()
结尾
希望对大家有帮助
致力于办公自动化的小小程序员一枚
都看到这了,关注+点赞+收藏=不迷路!!
如果你想知道更多关于Python办公自动化的知识各位佬给个关注吧!