高等数学求导积分公式

高等数学求导积分公式

1 基本初等函数导数公式

( x α ) ′ = α x α (x ^ \alpha)' = \alpha x ^ \alpha (xα)=αxα

( sin ⁡ x ) ′ = cos ⁡ x (\sin x)' = \cos x (sinx)=cosx

( cos ⁡ x ) ′ = sin ⁡ x (\cos x)' = \sin x (cosx)=sinx

( tan ⁡ x ) ′ = sec ⁡ 2 x (\tan x)' = \sec ^ 2 x (tanx)=sec2x

( cot ⁡ x ) ′ = − csc ⁡ 2 x (\cot x)' = -\csc ^ 2 x (cotx)=csc2x

( sec ⁡ x ) ′ = sec ⁡ x ⋅ tan ⁡ x (\sec x)' = \sec x \cdot \tan x (secx)=secxtanx

( csc ⁡ x ) ′ = − csc ⁡ x ⋅ cot ⁡ x (\csc x)' = -\csc x \cdot \cot x (cscx)=cscxcotx

( arcsin ⁡ x ) ′ = 1 1 − x 2 (\arcsin x)' = \frac{1}{\sqrt{1 - x ^ 2}} (arcsinx)=1x2 1

( arccos ⁡ x ) ′ = − 1 1 − x 2 (\arccos x)' = -\frac{1}{\sqrt{1 - x ^ 2}} (arccosx)=1x2 1

( arctan ⁡ x ) ′ = 1 1 + x 2 (\arctan x)' = \frac{1}{1 + x ^ 2} (arctanx)=1+x21

( a r c c o t   x ) ′ = − 1 1 + x 2 (arccot \ x)' = - \frac{1}{1 + x ^ 2} (arccot x)=1+x21

( a x ) ′ = a x ⋅ ln ⁡ a (a ^ x)' = a ^ x \cdot \ln a (ax)=axlna

( log ⁡ a x ) ′ = 1 x ⋅ ln ⁡ a (\log_a x)' = \frac{1}{x \cdot \ln a} (logax)=xlna1

C ′ = 0 C' = 0 C=0

2 高阶导数

( a x ) ( n ) = a x ⋅ ( ln ⁡ a ) ( n ) (a ^ x) ^ {(n)} = a ^ x \cdot (\ln a) ^ {(n)} (ax)(n)=ax(lna)(n)

( sin ⁡ x ) ( n ) = sin ⁡ ( x + n π 2 ) (\sin x) ^ {(n)} = \sin (x + \frac{n \pi}{2}) (sinx)(n)=sin(x+2nπ)

( cos ⁡ x ) ( n ) = cos ⁡ ( x + n π 2 ) (\cos x) ^ {(n)} = \cos (x + \frac{n \pi}{2}) (cosx)(n)=cos(x+2nπ)

[ ln ⁡ ( 1 + x ) ] ( n ) = ( − 1 ) ( n − 1 ) ( n − 1 ) ! ( 1 + x ) ( n ) [\ln (1 + x)] ^ {(n)} = (-1) ^ {(n-1)} \frac{(n-1)!}{(1+x) ^ {(n)}} [ln(1+x)](n)=(1)(n1)(1+x)(n)(n1)!

( 1 1 + x ) ( n ) = ( − 1 ) ( n ) ( n ) ! ( 1 + x ) ( n + 1 ) (\frac {1}{1+x}) ^ {(n)} = (-1) ^ {(n)} \frac{(n)!}{(1+x) ^ {(n+1)}} (1+x1)(n)=(1)(n)(1+x)(n+1)(n)!

( x α ) ( n ) = α ( α − 1 ) . . . ( α − n + 1 ) x ( α − n ) (x ^ \alpha) ^ {(n)} = \alpha (\alpha -1)...(\alpha - n + 1) x ^ {(\alpha - n)} (xα)(n)=α(α1)...(αn+1)x(αn)

3 不定积分基本公式

∫ x α d x = 1 α + 1 x α + 1 + C ∫ 1 x d x = ln ⁡ ∣ x ∣ + C ∫ a x d x = a x ln ⁡ a + C ∫ e x d x = e x + C ∫ sin ⁡ x d x = − cos ⁡ x + C ∫ cos ⁡ x d x = sin ⁡ x + C ∫ tan ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C ∫ cot ⁡ x d x = ln ⁡ ∣ sin ⁡ x ∣ + C ∫ sec ⁡ x d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C ∫ csc ⁡ x d x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C ∫ sec ⁡ x tan ⁡ x d x = sec ⁡ x + C ∫ csc ⁡ x cot ⁡ x d x = − csc ⁡ x + C ∫ sec ⁡ 2 x d x = tan ⁡ x + C ∫ csc ⁡ 2 x d x = − cot ⁡ x + C ∫ 1 x 2 + a 2 d x = 1 a arctan ⁡ x a + C ∫ 1 x 2 − a 2 d x = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C ∫ 1 a 2 − x 2 d x = arcsin ⁡ x a + C ∫ 1 x 2 + a 2 d x = ln ⁡ ∣ x + x 2 + a 2 ∣ + C ∫ 1 x 2 − a 2 d x = ln ⁡ ∣ x + x 2 − a 2 ∣ + C ∫ sinh ⁡ x d x = cosh ⁡ x + C ∫ cosh ⁡ x d x = sinh ⁡ x + C ∫ 1 sinh ⁡ 2 x d x = − coth ⁡ x + C ∫ 1 cosh ⁡ 2 x d x = tanh ⁡ x + C \int x ^ \alpha dx = \frac{1}{\alpha + 1} x ^ {\alpha + 1} + C \\\\ \int \frac{1}{x} dx = \ln |x| + C \\\\ \int a ^ x dx = \frac{a ^ x}{\ln a} + C \\\\ \int e ^ x dx = e ^ x + C \\\\ \int \sin x dx = -\cos x + C \\\\ \int \cos x dx = \sin x + C \\\\ \int \tan x dx = -\ln |\cos x| + C \\\\ \int \cot x dx = \ln |\sin x| + C \\\\ \int \sec x dx = \ln |\sec x + \tan x| + C \\\\ \int \csc x dx = \ln |\csc x - \cot x| + C \\\\ \int \sec x \tan x dx = \sec x + C \\\\ \int \csc x \cot x dx = -\csc x + C \\\\ \int \sec ^ 2 x dx = \tan x + C \\\\ \int \csc ^ 2 x dx = -\cot x + C \\\\ \int \frac{1}{x ^ 2 + a ^ 2} dx = \frac{1}{a} \arctan \frac{x}{a} + C \\\\ \int \frac{1}{x ^ 2 - a ^ 2} dx = \frac{1}{2a} \ln |\frac{x - a}{x + a}| + C \\\\ \int \frac{1}{\sqrt{a ^ 2 - x ^ 2}} dx = \arcsin \frac{x}{a} + C \\\\ \int \frac{1}{\sqrt{x ^ 2 + a ^ 2}} dx = \ln |x + \sqrt{x ^ 2 + a ^ 2}| + C \\\\ \int \frac{1}{\sqrt{x ^ 2 - a ^ 2}} dx = \ln |x + \sqrt{x ^ 2 - a ^ 2}| + C \\\\ \int \sinh x dx = \cosh x + C \\\\ \int \cosh x dx = \sinh x + C \\\\ \int \frac{1}{\sinh ^ 2 x} dx = -\coth x + C \\\\ \int \frac{1}{\cosh ^ 2 x} dx = \tanh x + C xαdx=α+11xα+1+Cx1dx=lnx+Caxdx=lnaax+Cexdx=ex+Csinxdx=cosx+Ccosxdx=sinx+Ctanxdx=lncosx+Ccotxdx=lnsinx+Csecxdx=lnsecx+tanx+Ccscxdx=lncscxcotx+Csecxtanxdx=secx+Ccscxcotxdx=cscx+Csec2xdx=tanx+Ccsc2xdx=cotx+Cx2+a21dx=a1arctanax+Cx2a21dx=2a1lnx+axa+Ca2x2 1dx=arcsinax+Cx2+a2 1dx=lnx+x2+a2 +Cx2a2 1dx=lnx+x2a2 +Csinhxdx=coshx+Ccoshxdx=sinhx+Csinh2x1dx=cothx+Ccosh2x1dx=tanhx+C

4 等价无穷小

sin ⁡ x ∼ x ∼ tan ⁡ x arcsin ⁡ x ∼ x ∼ arctan ⁡ x 1 − cos ⁡ x ∼ 1 2 x 2 1 + x n − 1 ∼ 1 n x ln ⁡ ( 1 + x ) ∼ x e x − 1 ∼ x ( 1 + x ) α − 1 ∼ α x sinh ⁡ x ∼ sin ⁡ x ∼ x 1 + x − 1 − x ∼ x \sin x \sim x \sim \tan x \\\\ \arcsin x \sim x \sim \arctan x \\\\ 1 - \cos x \sim \frac{1}{2}x ^ 2 \\\\ \sqrt[n]{1 + x} - 1 \sim \frac{1}{n} x \\\\ \ln (1 + x) \sim x \\\\ e ^ x - 1 \sim x \\\\ (1 + x) ^ \alpha - 1 \sim \alpha x \\\\ \sinh x \sim \sin x \sim x \\\\ \sqrt{1 + x} - \sqrt{1 - x} \sim x sinxxtanxarcsinxxarctanx1cosx21x2n1+x 1n1xln(1+x)xex1x(1+x)α1αxsinhxsinxx1+x 1x x

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值