POJ1469(匈牙利算法模板)

二分图匹配中较为重要的三个公式:
二分图最小顶点覆盖 = 二分图最大匹配;
DAG图的最小路径覆盖 = 节点数(n)- 最大匹配数;
二分图最大独立集 = 节点数(n)- 最大匹配数;

匈牙利算法就是用来求二分图最大匹配的
具体讲解:
https://www.cnblogs.com/pony1993/archive/2012/07/25/2607738.html

#include <iostream>
#include <cstring>
#include <cstdio>
#define fi first
#define se second
#define show(a) cout<<a<<endl;
#define show2(a,b) cout<<a<<" "<<b<<endl;
#define show3(a,b,c) cout<<a<<" "<<b<<" "<<c<<endl;
using namespace std;

typedef long long ll;
typedef pair<int, int> P;
typedef pair<P, int> LP;
const ll inf = 1e17 + 10;
const int N = 1001;
const ll mod = 10007;
const int base=131;
//tr1::unordered_map<ll,ll> mp;

int n,m,id,t,x,y,k;//n,m为二分图的顶点集,其中x∈n,y∈m
int num[N],vis[N],cnt;
int a[N],b[N],c[N];
int ans,flag;

int mp[N][N],link[N];
//link记录m中的点y在n中所匹配的x点的编号
bool find(int x)
{
    int i;
    for(i=1;i<=m;i++)
    {
        if(mp[x][i]&&!vis[i])//x->i有边,且节点i未被搜索
	{
		vis[i]=1;//标记节点已被搜索
            //如果i不属于前一个匹配M或被i匹配到的节点可以寻找到增广路
		if(!link[i]||find(link[i]))
		{
			link[i]=x;
			return 1;
		}
	}
    }
    return 0;
}

int main()
{
//	ios::sync_with_stdio(false);
//	cin.tie(0);
	//cout.tie(0);

	scanf("%d",&t);
	while(t--)
	{
		scanf("%d%d",&n,&m);
		int sum=0;
		memset(mp,0,sizeof mp);
		memset(link,0,sizeof link);
		for(int i=1;i<=n;i++)
		{
			scanf("%d",&k);
			while(k--)
			{
				scanf("%d",&x);
				mp[i][x]=1;
			}
		}
		for(int i=1;i<=n;i++)
		{
			memset(vis,0,sizeof vis);
			if(find(i)) sum++;
		}
		if(sum==n) puts("YES");
		else puts("NO");
	}



}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值