二分图匹配中较为重要的三个公式:
二分图最小顶点覆盖 = 二分图最大匹配;
DAG图的最小路径覆盖 = 节点数(n)- 最大匹配数;
二分图最大独立集 = 节点数(n)- 最大匹配数;
匈牙利算法就是用来求二分图最大匹配的
具体讲解:
https://www.cnblogs.com/pony1993/archive/2012/07/25/2607738.html
#include <iostream>
#include <cstring>
#include <cstdio>
#define fi first
#define se second
#define show(a) cout<<a<<endl;
#define show2(a,b) cout<<a<<" "<<b<<endl;
#define show3(a,b,c) cout<<a<<" "<<b<<" "<<c<<endl;
using namespace std;
typedef long long ll;
typedef pair<int, int> P;
typedef pair<P, int> LP;
const ll inf = 1e17 + 10;
const int N = 1001;
const ll mod = 10007;
const int base=131;
//tr1::unordered_map<ll,ll> mp;
int n,m,id,t,x,y,k;//n,m为二分图的顶点集,其中x∈n,y∈m
int num[N],vis[N],cnt;
int a[N],b[N],c[N];
int ans,flag;
int mp[N][N],link[N];
//link记录m中的点y在n中所匹配的x点的编号
bool find(int x)
{
int i;
for(i=1;i<=m;i++)
{
if(mp[x][i]&&!vis[i])//x->i有边,且节点i未被搜索
{
vis[i]=1;//标记节点已被搜索
//如果i不属于前一个匹配M或被i匹配到的节点可以寻找到增广路
if(!link[i]||find(link[i]))
{
link[i]=x;
return 1;
}
}
}
return 0;
}
int main()
{
// ios::sync_with_stdio(false);
// cin.tie(0);
//cout.tie(0);
scanf("%d",&t);
while(t--)
{
scanf("%d%d",&n,&m);
int sum=0;
memset(mp,0,sizeof mp);
memset(link,0,sizeof link);
for(int i=1;i<=n;i++)
{
scanf("%d",&k);
while(k--)
{
scanf("%d",&x);
mp[i][x]=1;
}
}
for(int i=1;i<=n;i++)
{
memset(vis,0,sizeof vis);
if(find(i)) sum++;
}
if(sum==n) puts("YES");
else puts("NO");
}
}