给定一个包含 n + 1 个整数的数组 nums,其数字都在 1 到 n 之间(包括 1 和 n),可知至少存在一个重复的整数。假设只有一个重复的整数,找出这个重复的数。
示例 1:
输入: [1,3,4,2,2]
输出: 2
示例 2:
输入: [3,1,3,4,2]
输出: 3
说明:
不能更改原数组(假设数组是只读的)。
只能使用额外的 O(1) 的空间。
时间复杂度小于 O(n2) 。
数组中只有一个重复的数字,但它可能不止重复出现一次。
方法1:二分法
因为题目的要求比较多,所以hash不能使用,最开始采用暴力解法,也通过了,但实际上暴力解法时间复杂度是O(n2)。
采用二分法时间复杂度是O(nlogn)。之所以用到二分法,需要我们注意到一个条件 n + 1 个整数的数组 nums,其数字都在 1 到 n 之间。那么找到1-n的mid数,然后遍历数组,看小于等于mid的个数,如果个数小于等于mid,则说明在[mid+1,n]里面寻找,否则在[1,mid]里面,然后不断缩小寻找到的区间。
class Solution {
public:
int findDuplicate(vector<int>& nums) {
int n = nums.size();
int left = 1, right = n;
while(left < right){
int mid = left + (right - left)/2;
int cnt = 0;
for(int num : nums) //循环O(nlogn)次。
if(num <= mid) cnt++;
if(cnt <= mid) left = mid + 1;
else right = mid;
}
return right;
}
};
方法2:快慢指针(看了好久)
参考leetcode题解,大佬总结了很多快慢指针的题目
参考博客园
int slow = 0, fast = 0, t =0;
while(true){
slow = nums[slow];
fast = nums[nums[fast]];
if(slow == fast) break; //找到第一次相遇的点,肯定在环内
}
while(true){
slow = nums[slow];
t = nums[t];
if(t == slow) break; //两个慢指针一起走,必然会相遇
}
return slow;