leetcode--287寻找重复数(001)

本文介绍了两种高效查找数组中重复数字的方法:二分法和快慢指针法。二分法利用数组元素范围特性,通过迭代缩小搜索区间,实现O(nlogn)的时间复杂度。快慢指针法则巧妙地利用链表思想,在O(n)时间内找到重复数字,适用于不修改原数组且空间复杂度为O(1)的要求。
摘要由CSDN通过智能技术生成

给定一个包含 n + 1 个整数的数组 nums,其数字都在 1 到 n 之间(包括 1 和 n),可知至少存在一个重复的整数。假设只有一个重复的整数,找出这个重复的数。

示例 1:
输入: [1,3,4,2,2]
输出: 2

示例 2:
输入: [3,1,3,4,2]
输出: 3

说明:
不能更改原数组(假设数组是只读的)。
只能使用额外的 O(1) 的空间。
时间复杂度小于 O(n2) 。
数组中只有一个重复的数字,但它可能不止重复出现一次。

方法1:二分法
因为题目的要求比较多,所以hash不能使用,最开始采用暴力解法,也通过了,但实际上暴力解法时间复杂度是O(n2)。
采用二分法时间复杂度是O(nlogn)。之所以用到二分法,需要我们注意到一个条件 n + 1 个整数的数组 nums,其数字都在 1 到 n 之间。那么找到1-n的mid数,然后遍历数组,看小于等于mid的个数,如果个数小于等于mid,则说明在[mid+1,n]里面寻找,否则在[1,mid]里面,然后不断缩小寻找到的区间。

class Solution {
public:
    int findDuplicate(vector<int>& nums) {
        int n = nums.size();
        int left = 1, right = n;
        while(left < right){
            int mid = left + (right - left)/2;
            int cnt = 0;
            for(int num : nums)   //循环O(nlogn)次。
                if(num <= mid) cnt++;
            if(cnt <= mid) left = mid + 1;
            else right = mid;
        }
        return right;
    }
};

方法2:快慢指针(看了好久)
参考leetcode题解,大佬总结了很多快慢指针的题目
参考博客园

       int slow = 0, fast = 0, t =0;
        while(true){
            slow = nums[slow];
            fast = nums[nums[fast]];
            if(slow == fast) break; //找到第一次相遇的点,肯定在环内
        }
        while(true){
            slow = nums[slow];
            t = nums[t];
            if(t == slow) break; //两个慢指针一起走,必然会相遇
        }

        return slow;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值