DOI:10.14139/http://doc.docsou.com22-1228.2013.04.008
第26卷第4期大学物理实验Vol.26No.4Au.2013g
2013年8月PHYSICALEXPERIMENTOFCOLLEGE
()文章编号:10072934201304000305---
几组特殊形状永磁体的磁场及梯度COMSOL分析
宋 浩,黄 彦*,邓志扬,朱泉水
()南昌航空大学,江西南昌 330063
摘要:利用C静磁场,无电流”的应用模式给出了相对放置的永磁条、具有磁回路结构OMSOL“
的磁轭磁极、环形磁体的磁场分布图,并分析了这3组磁体的磁场和梯度情况,更关注于均匀磁场和恒梯度磁场的分布情况。关
键
词:永磁体;磁场;磁场梯度;COMSOL
文献标志码:A
中图分类号:O439;O441.5 -
在电磁学中,通电直导线、环形线圈(如亥姆赫兹线圈)以及通电螺线管等可以定量地计算出并有十分形它们的周围空间的磁场大小及分布,
象的图形表示。但是特殊形状的磁体及组合的静磁场分布的定量计算是十分复杂的,因此也无法
1]
。在实际的应准确而形象地描绘出磁场分布图[
此式给出了标量磁势与Vm(=0,00M)μ
5]
。所以“静磁场,无电流”的应磁化强度的关系[
和H=用模式的稳态方程:H)Vm。(0r,μμ
6]
,另外,由磁场中零磁标势面选取的任意性[为了计算的方便,一般选在磁体的对称平面上。在满足对模型设置合适的网格划分,将采用边界条件时,
7-9]
,有限元法[将相应的边值问题最终归结为一
用研究中,往往要构造一些特殊形状和组合的永磁体达到科学研究实验和工业应用所需磁场分布要求,比如科学史上著名的原子空间取向量子化
2]
——史特恩—盖拉赫实验[、工业应用较为实验—
3,4]
。尽管工程电磁场计算提广泛的磁悬浮陀螺[
组多元的代数方程求解,能很快地计算出模型中空间各点的磁感应强度等物理量。
供了各种数值计算方法,方便程度和功能与目前计算机的有限元模拟软件如ANSYS、ANSOFT
、MaxwellCOMSOL等仍无法比拟。因为COM-SOL Multihsics具有优秀的多物理场耦合功py
能,且目前利用此软件在静磁场分布公开发表的文献较少,文章中特列举了几组形状比较特殊的永磁体及其组合,利用COMSOL模拟它们周围空间磁场分布并分析磁场梯度的变化。
以下模型都是在C磁场,无电OMSOL的“流”的应用模式下进行模拟的。它的外部环境条件为:温度T=2绝对压力PA=193.15K,atm。在静磁学中没有电流存在,可以通过使用标量磁势解决。由×H=0,可以定义磁标量势Vm,H=Vm。磁化的本构关系为B=μH+0(,又因为B=0,本构关系变形可以得出:M)
收稿日期:20130407--
1 圆柱体永磁体磁场力探测模拟和
实验
用一个尺 一块圆柱形永磁体周围分布磁场,
当小磁体寸很小的圆柱形磁体去试探这个磁场,所受的磁场力与自身重力相等(时,小磁F=mg)体相对大圆柱磁体的上表面距离h。利用模拟和实验的方法分别获得这个距离,以进行模拟和实验的比较。1.1 COMSOL模拟
,外半径大圆柱形磁体(中心带孔)内半径r高为hR1=0.038m,.0025m, 1=01=
底面处于X小圆柱磁体(中心带0.032m,Y面;,外半径R2=0.孔)0067m,内半径r 2=高为h小磁体悬浮在大0.001m,.0064m, 2=0
磁体的正上方。外部边界为半径0.1m、高度
););基金项目:江西省教学改革研究课题(南昌航空大学教学改革研究课题(地方高校国家级大学生创新创业JXJG12711ZB1203---
);)训练计划项目(南昌航空大学大学生“三小”活动项目(201210406026SXCG07
*通讯联系人