用c语言求差商法的实验报告,A5算法C语言实现报告(写写帮推荐)

else low=mid+1; /*修改区间下界*/

mid=(high+low)/2; } if(x==a[mid]) printf("Found %d,%d\n",x,mid); else printf("Not found\n"); }

三、数值计算常用经典算法

1.级数计算

级数计算的关键是“描述出通项”,而通项的描述法有两种:一为直接法、二为间接法又称递推法。

直接法的要领是:利用项次直接写出通项式;递推法的要领是:利用前一个(或多个)通项写出后一个通项。

可以用直接法描述通项的级数计算例子有: (1)1+2+3+4+5+……

(2)1+1/2+1/3+1/4+1/5+……等等。

可以用间接法描述通项的级数计算例子有: (1)1+1/2+2/3+3/5+5/8+8/13+…… (2)1+1/2!+1/3!+1/4! +1/5!+……等等。 (1)直接法求通项

1、求1+1/2+1/3+1/4+1/5+……+1/100的和。 main() { float s; int i; s=0.0; for(i=1;i<=100;i++) s=s+1.0/i ; printf("1+1/2+1/3+...+1/100=%f\n",s); } 【解析】程序中加粗部分就是利用项次i的倒数直接描述出每一项,并进行累加。注意:因为i是整数,故分子必须写成1.0的形式!

(2)间接法求通项(即递推法)

2、计算下列式子前20项的和:1+1/2+2/3+3/5+5/8+8/13+……。 [分析]此题后项的分子是前项的分母,后项的分母是前项分子分母之和。 main() { float s,fz,fm,t,fz1; int i; s=1; /*先将第一项的值赋给累加器s*/ fz=1;fm=2; t=fz/fm; /*将待加的第二项存入t中*/ for(i=2;i<=20;i++) { s=s+t;

/*以下求下一项的分子分母*/

fz1=fz; /*将前项分子值保存到fz1中*/

fz=fm; /*后项分子等于前项分母*/

fm=fz1+fm; /*后项分母等于前项分子、分母之和*/ t=fz/fm;

8 } printf("1+1/2+2/3+...=%f\n",s); }

下面举一个通项的一部分用直接法描述,另一部分用递推法描述的级数计算的例子:

3、计算级#include float g(float x,float eps); main()

数的值,当通项的绝对值小于eps时计算停止。

{ float x,eps; scanf("%f%f",&x,&eps); printf("\n%f,%f\n",x,g(x,eps)); } float g(float x,float eps) { int n=1;float s,t; s=1; t=1; do { t=t*x/(2*n);

s=s+(n*n+1)*t; /*加波浪线的部分为直接法描述部分,t为递推法描述部分*/

n++; }while(fabs(t)>eps); return s; } 2.一元非线性方程求根

(1)牛顿迭代法

牛顿迭代法又称牛顿切线法:先任意设定一个与真实的根接近的值x0作为第一次近似根,由x0求出f(x0),过(x0,f(x0))点做f(x)的切线,交x轴于x1,把它作为第二次近似根,再由x1求出f(x1),过(x1,f(x1))点做f(x)的切线,交x轴于x2,……如此继续下去,直到足够接近(比如|x- x0|<1e-6时)真正的根x*为止。

而f '(x0)=f(x0)/( x1- x0) 所以 x1= x0- f(x0)/ f ' (x0)

9 例如,用牛顿迭代法求下列方程在1.5附近的根:2x3-4x2+3x-6=0。 #include "math.h" main() { float x,x0,f,f1; x=1.5; do{ x0=x;

f=2*x0*x0*x0-4*x0*x0+3*x0-6;

f1=6*x0*x0-8*x0+3;

x=x0-f/f1; }while(fabs(x-x0)>=1e-5); printf ("%f\n",x); }

(2)二分法

算法要领是:先指定一个区间[x1, x2],如果函数f(x)在此区间是单调变化的,则可以根据f(x1)和 f(x2)是否同号来确定方程f(x)=0在区间[x1, x2]内是否有一个实根;如果f(x1)和 f(x2)同号,则f(x) 在区间[x1, x2]内无实根,要重新改变x1和x2的值。当确定f(x) 在区间[x1, x2]内有一个实根后,可采取二分法将[x1, x2]一分为二,再判断在哪一个小区间中有实根。如此不断进行下去,直到小区间足够小为止。

具体算法如下:

(1)输入x1和x2的值。 (2)求f(x1)和f(x2)。

(3)如果f(x1)和f(x2)同号说明在[x1, x2] 内无实根,返回步骤(1),重新输入x1和x2的值;若f(x1)和f(x2)不同号,则在区间[x1, x2]内必有一个实根,执行步骤(4)。 (4)求x1和x2的中点:x0=(x1+ x2)/2。 (5)求f(x0)。

(6)判断f(x0)与f(x1)是否同号。

①如果同号,则应在[x0, x2]中寻找根,此时x1已不起作用,用x0代替x1,用f(x0)代替f(x1)。

②如果不同号,则应在[x1, x0]中寻找根,此时x2已不起作用,用x0代替x2,用f(x0)代替f(x2)。

(7)判断f(x0)的绝对值是否小于某一指定的值(例如10-5)。若不小于10-5,则返回步骤(4)重复执行步骤(4)、(5)、(6);否则执行步骤(8)。

10 (8)输出x0的值,它就是所求出的近似根。

例如,用二分法求方程2x3-4x2+3x-6=0在(-10,10)之间的根。 #include "math.h" main() { float x1,x2,x0,fx1,fx2,fx0; do { printf("Enter x1&x2");

scanf("%f%f",&x1,&x2);

fx1=2*x1*x1*x1-4*x1*x1+3*x1-6;

fx2=2*x2*x2*x2-4*x2*x2+3*x2-6;

}while(fx1*fx2>0); do { x0=(x1+x2)/2;

fx0=2*x0*x0*x0-4*x0*x0+3*x0-6;

if((fx0*fx1)<0) { x2=x0; fx2=fx0; }

else {x1=x0; fx1=fx0; }

}while(fabs(fx0)>1e-5); printf("%f\n",x0); } 3.梯形法计算定积分

定积分 的几何意义是求曲线y=f(x)、x=a、x=b以及x轴所围成的面积。

可以近似地把面积视为若干小的梯形面积之和。例如,把区间[a, b]分成n个长度相等的小区间,每个小区间的长度为h=(b-a)/n,第i个小梯形的面积为[f(a+(i-1)·h)+f(a+i·h)]·h/2,将n个小梯形面积加起来就得到定积分的近似值:

根据以上分析,给出“梯形法”求定积分的N-S结构图:

输入区间端点:a,b 输入等分数n h=(b-a)/2, s=0 i从1到n

si=(f(a+(i-1)*h)+f(a+i*h))*h/2 s=s+si 输出s 11 上述程序的几何意义比较明显,容易理解。但是其中存在重复计算,每次循环都要计算小梯形的上、下底。其实,前一个小梯形的下底就是后一个小梯形的上底,完全不必重复计算。为此做出如下改进:

矩形法求定积分则更简单,就是将等分出来的图形当作矩形,而不是梯形。例如:求定积分

的值。等分数n=1000。

#include "math.h" float DJF(float a,float b) { float t,h; int n,i; float HSZ(float x); n=1000; h=fabs(a-b)/n; t=(HSZ(a)+HSZ(b))/2; for(i=1;i<=n-1;i++) t=t+HSZ(a+i*h); t=t*h; return(t); } float HSZ(float x) { return(x*x+3*x+2); } main() { float y; y=DJF(0,4);

printf("%f\n",y); }

四、其他常见算法

1.迭代法

其基本思想是把一个复杂的计算过程转化为简单过程的多次重复。每次重复都从旧值的基础上递推出新值,并由新值代替旧值。

例如,猴子吃桃问题。猴子第一天摘下若干个桃子,当即吃了一半,还不过瘾,又多吃了一个。第二天早上又将剩下的桃子吃掉一半,又多吃了一个。以后每天早上都吃了前一天剩下的一半零一个。到第10天早上想再吃时,就只剩一个桃子了。编程求第一天共摘多少桃子。

main() { int day,peach; peach=1; for(day=9;day>=1;day--) peach=(peach+1)*2; printf("The first day:%d\n",peach);} 又如,用迭代法求x=

的根。

求平方根的迭代公式是:xn+1=0.5×(xn+a/ xn ) [算法] (1)设定一个初值x0。

(2)用上述公式求出下一个值x1。

(3)再将x1代入上述公式,求出下一个值x2。

(4)如此继续下去,直到前后两次求出的x值(xn+1和xn)满足以下关系: | xn+1- xn|<10-5 #include "math.h" main() { float a,x0,x1; scanf("%f",&a); x0=a/2; x1=(x0+a/x0)/2; do{ x0=x1;

x1=(x0+a/x0)/2;

}while(fabs(x0-x1)>=1e-5);

printf("%f\n",x1); } 2.进制转换

(1)十进制数转换为其他进制数

13 一个十进制正整数m转换成r进制数的思路是,将m不断除以r取余数,直到商为0时止,以反序输出余数序列即得到结果。

注意,转换得到的不是数值,而是数字字符串或数字串。

例如,任意读入一个十进制正整数,将其转换成二至十六任意进制的字符串。 void tran(int m,int r,char str[],int *n) { char sb[]="0123456789ABCDEF"; int i=0,g; do{ g=m%r;

str[i]=sb[g];

m=m/r;

i++;

}while(m!=0); *n=i; } main() { int x,r0; /*r0为进制基数*/ int i,n; /*n中存放生成序列的元素个数*/

char a[50];

scanf("%d%d",&x,&r0); if(x>0&&r0>=2&&r0<=16) { tran(x,r0,a,&n); for(i=n-1;i>=0;i--) printf("%c",a[i]);

printf("\n"); } else exit(0); } (2)其他进制数转换为十进制数

其他进制整数转换为十进制整数的要领是:“按权展开”,例如,有二进制数101011,则其十进制形式为1×25+0×24+1×23+0×22+1×21+1×20=43。若r进制数an……a2a1(n位数)转换成十进制数,方法是an×r n-1+……a2×r1+a1×r0。

注意:其他进制数只能以字符串形式输入。

1、任意读入一个二至十六进制数(字符串),转换成十进制数后输出。

#include "string.h" #include "ctype.h" main() { char x[20]; int r,d; gets(x); /*输入一个r进制整数序列*/ scanf("%d",&r); /*输入待处理的进制基数2-16*/ d=Tran(x,r); printf("%s=%d\n",x,d); }

14 int Tran(char *p,int r) { int d,i,cr; char fh,c; d=0; fh=*p; if(fh=='-') p++; for(i=0;iif(toupper(c)>='A') cr=toupper(c)-'A'+10;

else cr=c-'0';

d=d*r+cr; } if(fh=='-') d=-d; return(d); } 3.矩阵转置

矩阵转置的算法要领是:将一个m行n列矩阵(即m×n矩阵)的每一行转置成另一个n×m矩阵的相应列。

1、将以下2×3矩阵转置后输出。 即将 1 2 3 转置成 1 4

4 5 6

2 5

3 6 main() { int a[2][3],b[3][2],i,j,k=1; for(i=0;i<2;i++)

for(j=0;j<3;j++)

a[i][j]=k++; /*以下将a的每一行转存到b的每一列*/ for(i=0;i<2;i++) for(j=0;j<3;j++)

b[j][i]=a[i][j]; for(i=0;i<3;i++) /*输出矩阵b*/ { for(j=0;j<2;j++)

printf("%3d",b[i][j]);

printf("\n"); } } 4.字符处理

(1)字符统计:对字符串中各种字符出现的次数的统计。

15 典型例题:任意读入一个只含小写字母的字符串,统计其中每个字母的个数。 #include "stdio.h " main() { char a[100]; int n[26]={0}; int i; /*定义26个计数器并置初值0*/ gets(a); for(i=0;a[i]!= '\0' ;i++) /*n[0]中存放‟a‟的个数,n[1] 中存放‟b‟的个数……*/

n[a[i]-'a' ]++; /*各字符的ASCII码值减‟a‟的ASCII码值,正好得对应计数器下标*/ for(i=0;i<26;i++)

if(n[i]!=0) printf("%c :%d\n ", i+'a', n[i]); } (2)字符加密

例如、对任意一个只含有英文字母的字符串,将每一个字母用其后的第三个字母替代后输出(字母X后的第三个字母为A,字母Y后的第三个字母为B,字母Z后的第三个字母为C。)

#include "stdio.h" #include "string.h" main() { char a[80]= "China"; int i; for(i=0; i='x'&&a[i]<='z'||a[i]>='X'&&a[i]<='Z') a[i]= a[i]-26+3; else a[i]= a[i]+3; puts(a); } 5.整数各数位上数字的获取

算法核心是利用“任何正整数整除10的余数即得该数个位上的数字”的特点,用循环从低位到高位依次取出整数的每一数位上的数字。

1、任意读入一个5位整数,输出其符号位及从高位到低位上的数字。 main() { long x; int w,q,b,s,g; scanf("%ld",&x);

if(x<0) {printf("-,"); x=-x;}

w=x/10000; /*求万位上的数字*/

q=x/1000%10; /*求千位上的数字*/ b=x/100%10; /*求百位上的数字*/ s=x/10%10; /*求十位上的数字*/ g=x%10; /*求个位上的数字*/

printf("%d,%d,%d,%d,%d\n",w,q,b,s,g); }

16 例

2、任意读入一个整数,依次输出其符号位及从低位到高位上的数字。 [分析]此题读入的整数不知道是几位数,但可以用以下示例的方法完成此题:

例如读入的整数为3796,存放在x中,执行x%10后得余数为6并输出;将x/10得379后赋值给x。再执行x%10后得余数为9并输出;将x/10得37后赋值给x……直到商x为0时终止。

main() { long x; scanf("%ld",&x); if(x<0) {printf("- "); x=-x;} do { /*为了能正确处理0,要用do_while循环*/

printf("%d ", x%10);

x=x/10;

}while(x!=0);

printf("\n"); } 例

3、任意读入一个整数,依次输出其符号位及从高位到低位上的数字。

[分析]此题必须借助数组将依次求得的低位到高位的数字保存后,再逆序输出。 main() { long x; int a[20],i,j; scanf("%ld",&x);

if(x<0) { printf("- "); x=-x; } i=0; do { a[i]=x%10;

x=x/10; i++;

}while(x!=0);

for(j=i-1;j>=0;j--)

printf("%d ",a[j]); printf("\n"); } 6.辗转相除法求两个正整数的最大公约数

该算法的要领是:假设两个正整数为a和b,先求出前者除以后者的余数,存放到变量r中,若r不为0,则将b的值得赋给a,将r的值得赋给b;再求出a除以b的余数,仍然存放到变量r中……如此反复,直至r为0时终止,此时b中存放的即为原来两数的最大公约数。

1、任意读入两个正整数,求出它们的最大公约数。 [ 法一:用while循环时,最大公约数存放于b中] main() { int a,b,r; do scanf("%d%d",&a,&b);

17 while(a<=0||b<=0); /*确保a和b为正整数*/ r=a%b; while(r!=0) { a=b;b=r;r=a%b; } printf("%d\n",b); } [ 法二:用do…while循环时,最大公约数存放于a中] main() { int a,b,r; do scanf("%d%d",&a,&b); while(a<=0||b<=0); /*确保a和b为正整数*/ do {r=a%b;a=b;b=r;

}while(r!=0); printf("%d\n",a); } 【引申】可以利用最大公约数求最小公倍数。提示:两个正整数a和b的最小公倍数=a×b/最大公约数。

2、任意读入两个正整数,求出它们的最小公倍数。 [法一:利用最大公约数求最小公倍数] main() { int a,b,r,x,y; do scanf("%d%d",&a,&b); while(a<=0||b<=0); /*确保a和b为正整数*/ x=a; y=b; /*保留a、b原来的值*/ r=a%b; while(r!=0) { a=b;b=r;r=a%b; } printf("%d\n",x*y/b); } [法二:若其中一数的最小倍数也是另一数的倍数,该最小倍数即为所求] main() { int a,b,r,i; do scanf("%d%d",&a,&b); while(a<=0||b<=0); /*确保a和b为正整数*/ i=1; while(a*i%b!=0) i++; printf("%d\n",i*a); } 7.求最值

18 即求若干数据中的最大值(或最小值)。算法要领是:首先将若干数据存放于数组中,通常假设第一个元素即为最大值(或最小值),赋值给最终存放最大值(或最小值)的max(或min)变量中,然后将该量max(或min)的值与数组其余每一个元素进行比较,一旦比该量还大(或小),则将此元素的值赋给max(或min)……所有数如此比较完毕,即可求得最大值(或最小值)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>