序章:从零到一,构建基于Zynq的图像采集与显示系统
欢迎来到《基于Zynq的图像采集显示项目》专栏。
本专栏旨在记录和分享一个完整的图像采集与显示系统在 Zynq 平台上的开发全过程。内容覆盖从基础硬件设计到系统软件实现的全流程,重点以 Vivado + XSDK + Petalinux + Qt 工具链为主线,逐步构建出一个基于Zynq的稳定图像系统。未来还将尝试引入图像处理算法、边缘AI等功能,拓展更丰富的应用场景(提前画饼)。
本专栏不会过多展开基础性的知识,更多在于流程分享,开放源码,博主会尽可能地使用简介的描述,当然读者具有相关经验更佳:
- 对 Zynq SoC 开发有一定了解的工程师
- 对 C语言、Linux、驱动开发、Qt 开发 有一定经验的开发者
一、项目整体流程规划
本项目将分为三个阶段:基础硬件设计阶段、裸机开发阶段 和 Linux系统开发阶段。所有流程均围绕 Zynq 开发为核心展开,基础思路就是使用裸机验证,后架设Linux系统实现更多的功能。
注意:其中,基础硬件设计阶段只做简介,博主并非专业硬件工程师,暂不具备高速pcb设计能力,核心器件以(钞能力购买)为主,不做过多展开,当然大家也可以多多交流,助力博主后续学习一下高速pcb设计
1.硬件设计阶段
- 电路原理图设计与平台搭建
包括 Zynq 主芯片引脚分配、外设接口设计(LCD、摄像头、触摸IIC,等)
2.裸机开发阶段(Vivado + XSDK)
-
Vivado 工程构建与硬件导出
配置 Zynq Processing System(PS),启用 UART、I2C、DDR接口等 -
XSDK 创建裸机工程与验证
创建裸机主工程,完成串口输出等初步验证。 -
显示控制裸机实现
PL Block design搭建 LCD 显示基础底层,配合PS使用 VDMA 将图像帧送至显示器,实现画面显示。 -
摄像头采集裸机实现
PL Block design搭建 CMOS 摄像头(如 OV5640)采集基础底层、缓冲存储帧数据至 DDR。 -
裸机图采显示整合验证
实现摄像头图像 → 缓冲区 → VDMA → 显示输出 的闭环,实现采集与显示流式运行。
3.Linux系统开发阶段(PetaLinux)
-
PetaLinux 工程搭建准备
介绍PetaLinux 工具链,介绍交叉编译环境、所需资源等。 -
设备树配置与驱动管理
修改设备树以支持 framebuffer、摄像头等外设节点,使用 Vivado 工程生成的.hdf
搭建 PetaLinux 项目等 -
Framebuffer 图像显示测试
利用/dev/fb0
实现图像输出测试,验证显示路径完整性。 -
V4L2 驱动开发与摄像头支持
编写 V4L2 驱动,注册/dev/videoX
,实现图像采集配置、DMA 缓冲管理与数据读取。 -
C语言用户层图采显示程序
使用 Linux C 实现图像抓取与 framebuffer 显示,通过mmap
和ioctl
控制同步刷新。 -
Qt 环境搭建与测试程序
在 PetaLinux 上部署 Qt 运行库,交叉编译简单 UI 工程,测试 GUI 显示与图像渲染功能。 -
Qt 图采显示系统开发
基于 Qt 实现带预览窗口、控制按钮、等图像采集显示界面。 -
拓展功能:触摸屏驱动与交互逻辑
移植电容触摸屏驱动,配合Qt实现场景交互,如图像拍照、软触发等。
二、专栏亮点
- 工具链清晰:全流程采用 Vivado + XSDK + PetaLinux 工具,呈现实际项目开发完整流程
- 裸机 + Linux 全覆盖:先裸机通流程,再 Linux 系统化管理,适合从单点能力迈向系统能力
- 代码开源 + 实操导向:每阶段都提供配套源码与说明,避免“纸上谈兵”
- 未来拓展性:可接入 OpenCV、边缘AI、YOLO 模型等,便于迁移至更多图像处理项目中 (这里容我先画个饼)
三、建议具备的基础能力
- Vivado 工程构建与 IP 配置能力
- Xilinx SDK (XSDK) 使用经验,能调试裸机程序
- Linux 驱动基础,了解设备树、V4L2 框架
- C语言系统编程能力,理解缓存映射、DMA
- Qt UI 开发经验(建议有 C++ 面向对象基础)
四、后续规划(画饼)方向
- 移植 OpenCV 进行图像算法处理
- 移植YOLO 模型
- 视频流传输、录像存储等
五、迈向更高性能的图像处理系统
在完成图像采集与显示系统的搭建后,后续也将探索将部分图像处理算法前移至FPGA侧实现,借助Zynq平台中 PL 的并行计算优势,进一步提升处理效率、降低系统延迟。
可能拓展的方向包括:
- 图像预处理硬化:如灰度化、二值化、边缘检测等基础算法通过 FPGA 实现并行加速;
- 轻量级目标检测模型部署:尝试将 YOLO 等加载到 FPGA,探索 CNN 卷积核硬化的方案;
- 打造具备实时智能识别能力的图像平台。
这些拓展将充分释放 FPGA 在图像处理领域的性能潜力,配合Zynq独特的ARM+FPGA架构,为构建更高性能、智能化的嵌入式视觉系统提供可行路径。
从零开始,一步步构建自己的嵌入式图像系统,打通 Zynq 开发的完整链路。
以上就是本专栏的构思,期待大家在本专栏中相互交流,相互收获,共同进步!
作者:Jafi