序章:从零到一,构建基于Zynq的图像采集与显示系统

序章:从零到一,构建基于Zynq的图像采集与显示系统

欢迎来到《基于Zynq的图像采集显示项目》专栏。

本专栏旨在记录和分享一个完整的图像采集与显示系统在 Zynq 平台上的开发全过程。内容覆盖从基础硬件设计系统软件实现的全流程,重点以 Vivado + XSDK + Petalinux + Qt 工具链为主线,逐步构建出一个基于Zynq的稳定图像系统。未来还将尝试引入图像处理算法、边缘AI等功能,拓展更丰富的应用场景(提前画饼)。

本专栏不会过多展开基础性的知识,更多在于流程分享,开放源码,博主会尽可能地使用简介的描述,当然读者具有相关经验更佳:

  • Zynq SoC 开发有一定了解的工程师
  • C语言、Linux、驱动开发、Qt 开发 有一定经验的开发者

一、项目整体流程规划

本项目将分为三个阶段:基础硬件设计阶段裸机开发阶段Linux系统开发阶段。所有流程均围绕 Zynq 开发为核心展开,基础思路就是使用裸机验证,后架设Linux系统实现更多的功能。
注意:其中,基础硬件设计阶段只做简介,博主并非专业硬件工程师,暂不具备高速pcb设计能力,核心器件以(钞能力购买)为主,不做过多展开,当然大家也可以多多交流,助力博主后续学习一下高速pcb设计


1.硬件设计阶段

  1. 电路原理图设计与平台搭建
    包括 Zynq 主芯片引脚分配、外设接口设计(LCD、摄像头、触摸IIC,等)

2.裸机开发阶段(Vivado + XSDK)

  1. Vivado 工程构建与硬件导出
    配置 Zynq Processing System(PS),启用 UART、I2C、DDR接口等

  2. XSDK 创建裸机工程与验证
    创建裸机主工程,完成串口输出等初步验证。

  3. 显示控制裸机实现
    PL Block design搭建 LCD 显示基础底层,配合PS使用 VDMA 将图像帧送至显示器,实现画面显示。

  4. 摄像头采集裸机实现
    PL Block design搭建 CMOS 摄像头(如 OV5640)采集基础底层、缓冲存储帧数据至 DDR。

  5. 裸机图采显示整合验证
    实现摄像头图像 → 缓冲区 → VDMA → 显示输出 的闭环,实现采集与显示流式运行。


3.Linux系统开发阶段(PetaLinux)

  1. PetaLinux 工程搭建准备
    介绍PetaLinux 工具链,介绍交叉编译环境、所需资源等。

  2. 设备树配置与驱动管理
    修改设备树以支持 framebuffer、摄像头等外设节点,使用 Vivado 工程生成的 .hdf 搭建 PetaLinux 项目等

  3. Framebuffer 图像显示测试
    利用 /dev/fb0 实现图像输出测试,验证显示路径完整性。

  4. V4L2 驱动开发与摄像头支持
    编写 V4L2 驱动,注册 /dev/videoX,实现图像采集配置、DMA 缓冲管理与数据读取。

  5. C语言用户层图采显示程序
    使用 Linux C 实现图像抓取与 framebuffer 显示,通过 mmapioctl 控制同步刷新。

  6. Qt 环境搭建与测试程序
    在 PetaLinux 上部署 Qt 运行库,交叉编译简单 UI 工程,测试 GUI 显示与图像渲染功能。

  7. Qt 图采显示系统开发
    基于 Qt 实现带预览窗口、控制按钮、等图像采集显示界面。

  8. 拓展功能:触摸屏驱动与交互逻辑
    移植电容触摸屏驱动,配合Qt实现场景交互,如图像拍照、软触发等。


二、专栏亮点

  • 工具链清晰:全流程采用 Vivado + XSDK + PetaLinux 工具,呈现实际项目开发完整流程
  • 裸机 + Linux 全覆盖:先裸机通流程,再 Linux 系统化管理,适合从单点能力迈向系统能力
  • 代码开源 + 实操导向:每阶段都提供配套源码与说明,避免“纸上谈兵”
  • 未来拓展性:可接入 OpenCV、边缘AI、YOLO 模型等,便于迁移至更多图像处理项目中 (这里容我先画个饼)

三、建议具备的基础能力

  • Vivado 工程构建与 IP 配置能力
  • Xilinx SDK (XSDK) 使用经验,能调试裸机程序
  • Linux 驱动基础,了解设备树、V4L2 框架
  • C语言系统编程能力,理解缓存映射、DMA
  • Qt UI 开发经验(建议有 C++ 面向对象基础)

四、后续规划(画饼)方向

  • 移植 OpenCV 进行图像算法处理
  • 移植YOLO 模型
  • 视频流传输、录像存储等

五、迈向更高性能的图像处理系统

在完成图像采集与显示系统的搭建后,后续也将探索将部分图像处理算法前移至FPGA侧实现,借助Zynq平台中 PL 的并行计算优势,进一步提升处理效率、降低系统延迟。

可能拓展的方向包括:

  • 图像预处理硬化:如灰度化、二值化、边缘检测等基础算法通过 FPGA 实现并行加速;
  • 轻量级目标检测模型部署:尝试将 YOLO 等加载到 FPGA,探索 CNN 卷积核硬化的方案;
  • 打造具备实时智能识别能力的图像平台

这些拓展将充分释放 FPGA 在图像处理领域的性能潜力,配合Zynq独特的ARM+FPGA架构,为构建更高性能、智能化的嵌入式视觉系统提供可行路径。


从零开始,一步步构建自己的嵌入式图像系统,打通 Zynq 开发的完整链路。

以上就是本专栏的构思,期待大家在本专栏中相互交流,相互收获,共同进步!


作者:Jafi


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值