#994 腐烂的橘子
BFS解法:
新增矩阵保存每个橘子的当前最大腐烂时间。初始腐烂橘子最大腐烂时间为0,其他情况为最大值。记录新鲜橘子的总数。
初始时,所有的坏橘子放入BFS的cache queue。然后从cache queue挨个出队为cur,访问cur的上下左右,如果是新鲜橘子,把它腐烂,修改它的腐烂时间为cur的最大腐烂时间+1,新鲜橘子总数减一。新鲜橘子总数减为0时,返回这个橘子的最大腐烂时间。cache queue为空时,新鲜橘子总数仍然大于0,则返回-1.
DFS解法:
void dfs(int i, int j, int& dist)
{
if(i<0 || i>=m || j<0 || j>=n || grid[i][j] == 0)
return;
if(grid[i][j] == 2 && dist != 0)
return;
if(grid[i][j] == 1 && dist+1 >=minDist[i][j])
return;
minDist[i][j] = dist+1;
dfs(i-1, j, minDist[i][j]);
dfs(i+1, j, minDist[i][j]);
dfs(i, j-1, minDist[i][j]);
dfs(i, j+1, minDist[i][j]);
}
void solution()
{
vector minDist;
for(int i=0; i<m; i++)
{
for(int j=0; j<n; j++)
{
if(2==grid[i][j])
{
int dist = 0;
dfs(i,j,dist);
}
}
}
//遍历minDist,找出新鲜橘子对应的最小值.如果发现新鲜橘子仍然是最大值,返回-1
}
#542. 01 矩阵
给定一个由 0 和 1 组成的矩阵 mat ,请输出一个大小相同的矩阵,其中每一个格子是 mat 中对应位置元素到最近的 0 的距离。
两个相邻元素间的距离为 1 。
示例 2:
输入:mat = [[0,0,0],[0,1,0],[1,1,1]]
输出:[[0,0,0],[0,1,0],[1,2,1]]
BFS解法:
0.矩阵ans,初始全为最大值.
1.遍历矩阵,把所有0的二维下标pair放入队列.
2.只要队列不为空,取队头cur,4个方向走出一步next.如果next是1并且ans[cur]+1<ans[next],则更新ans[next].
3.返回ans.
时间复杂度:每个位置只会访问一次,O(mn)
空间复杂度:O(mn)
动态规划解法:
minDist(i,j) = min(minDist(i-1,j),minDist(i,j-1), minDist(i+1, j), minDist(i,j+1)) + 1
注意状态转移方程的迭代顺序.从左上角到右下角推导一次,再从右下角到左上角推导一次,就能得到完整的答案.
时间复杂度:每个位置只会访问一次,O(mn)
空间复杂度:只需要两个位置的历史值作状态转移输入, 可以优化为O(1)。题目要求返回所有位置的值,直接用O(mn)就行了。