【复盘】深度优先搜索与广度优先搜索

#994 腐烂的橘子
BFS解法:
新增矩阵保存每个橘子的当前最大腐烂时间。初始腐烂橘子最大腐烂时间为0,其他情况为最大值。记录新鲜橘子的总数。
初始时,所有的坏橘子放入BFS的cache queue。然后从cache queue挨个出队为cur,访问cur的上下左右,如果是新鲜橘子,把它腐烂,修改它的腐烂时间为cur的最大腐烂时间+1,新鲜橘子总数减一。新鲜橘子总数减为0时,返回这个橘子的最大腐烂时间。cache queue为空时,新鲜橘子总数仍然大于0,则返回-1.

DFS解法:

void dfs(int i, int j, int& dist)
{
	if(i<0 || i>=m || j<0 || j>=n || grid[i][j] == 0)
		return;
	if(grid[i][j] == 2 && dist != 0)
		return;
	if(grid[i][j] == 1 && dist+1 >=minDist[i][j])
		return;
	minDist[i][j] = dist+1;
	dfs(i-1, j, minDist[i][j]);
	dfs(i+1, j, minDist[i][j]);
	dfs(i, j-1, minDist[i][j]);
	dfs(i, j+1, minDist[i][j]);	
}

void solution()
{
	vector minDist;
	for(int i=0; i<m; i++)
	{
		for(int j=0; j<n; j++)
		{
			if(2==grid[i][j])
			{
				int dist = 0;
				dfs(i,j,dist);
			}
		}
	}
	
	//遍历minDist,找出新鲜橘子对应的最小值.如果发现新鲜橘子仍然是最大值,返回-1
}

#542. 01 矩阵

给定一个由 0 和 1 组成的矩阵 mat ,请输出一个大小相同的矩阵,其中每一个格子是 mat 中对应位置元素到最近的 0 的距离。
两个相邻元素间的距离为 1 。
示例 2:
在这里插入图片描述
输入:mat = [[0,0,0],[0,1,0],[1,1,1]]
输出:[[0,0,0],[0,1,0],[1,2,1]]

BFS解法:
0.矩阵ans,初始全为最大值.
1.遍历矩阵,把所有0的二维下标pair放入队列.
2.只要队列不为空,取队头cur,4个方向走出一步next.如果next是1并且ans[cur]+1<ans[next],则更新ans[next].
3.返回ans.
时间复杂度:每个位置只会访问一次,O(mn)
空间复杂度:O(m
n)

动态规划解法:

minDist(i,j) = min(minDist(i-1,j),minDist(i,j-1), minDist(i+1, j), minDist(i,j+1)) + 1

注意状态转移方程的迭代顺序.从左上角到右下角推导一次,再从右下角到左上角推导一次,就能得到完整的答案.
时间复杂度:每个位置只会访问一次,O(mn)
空间复杂度:只需要两个位置的历史值作状态转移输入, 可以优化为O(1)。题目要求返回所有位置的值,直接用O(m
n)就行了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值