The Max Value of presents
Description
在一个m*n的棋盘上每一格都放有一个礼物,每个礼物都有一定的价值(大于0)。假如你从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格,直到到达棋盘的右下角。给定一个棋盘及其上面的礼物,请计算你最多能拿到多少价值的礼物?
Solution
典型的动态规划问题。基于循环的代码能够解决这个问题,为了存储缓存的中间结果,我们需要建立一个和原数组同维度的二维数组,该数组中的坐标为(i,j)的元素表示到达此处能拿到的礼物价值总和。
Code
public class maxValue {
//方法:动态规划
public static int getMaxVaule(int[][] data){
//列数量
int l=data.length;
//行数量
int h=data[0].length;
int [][]result=new int [h][l];
result[0][0]=data[0][0];
for(int i=1;i<l;i++){
result[0][i]=result[0][i-1]+data[0][i];
}
for(int i=1;i<h;i++){
result[i][0]=result[i-1][0]+data[i][0];
}
for(int i=1;i<h;i++){
for(int j=1;j<l;j++){
result[i][j]=Math.max(result[i-1][j], result[i][j-1])+data[i][j];
}
}
return result[h-1][l-1];
}
public static void main(String[] args){
int[][] data = {
{1,10,3,8},
{12,2,9,6},
{5,7,4,11},
{3,7,16,5}};
System.out.println(getMaxVaule(data));
}
}