剑指offer42~连续子数组的最大值

GreatestSumOfSubarrays

Description

输入一个整数数组,整数里面有正数也有负数。数组中的一个或者连续多个整数组成一个子数组。求所有子数组的和的最大值。要求时间复杂度为O(n)。

Solution1

动态规划
首先要知道这是一个递归问题,极大的长度下的解肯定是一个不那么大的长度进一步得到的。Dpmax存储最大的和,dp表示当前的子数组的和,递归公式:dp[i] = data[i] (i=0或dp[i-1]<=0)
dp[i-1]+data[i] i!=0且dp[i-1]>0
由于只需知道前一个情况的dp值,因此可省去dp数组,申请个变量即可

	
public class P218_GreatestSumOfSubarrays {
	    public static int findGreatestSumOfSumArrays(int[] data){
	        if(data==null || data.length==0)
	            return 0;	    
	        int dp = data[0],maxdp = dp;
	        for(int i=1;i<data.length;i++){
	            if(dp>0)
	                dp += data[i];
	            else
	                dp = data[i];
	            if(dp>maxdp)
	                maxdp = dp;
	        }
	        return maxdp;
	    }
	    public static void main(String[] args){
	        int[] data = {1,-2,3,10,-4,7,2,-5};
	        System.out.println(findGreatestSumOfSumArrays(data));
	    }
	}




Appendix

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值