GreatestSumOfSubarrays
Description
输入一个整数数组,整数里面有正数也有负数。数组中的一个或者连续多个整数组成一个子数组。求所有子数组的和的最大值。要求时间复杂度为O(n)。
Solution1
动态规划
首先要知道这是一个递归问题,极大的长度下的解肯定是一个不那么大的长度进一步得到的。Dpmax存储最大的和,dp表示当前的子数组的和,递归公式:dp[i] = data[i] (i=0或dp[i-1]<=0)
dp[i-1]+data[i] i!=0且dp[i-1]>0
由于只需知道前一个情况的dp值,因此可省去dp数组,申请个变量即可
public class P218_GreatestSumOfSubarrays {
public static int findGreatestSumOfSumArrays(int[] data){
if(data==null || data.length==0)
return 0;
int dp = data[0],maxdp = dp;
for(int i=1;i<data.length;i++){
if(dp>0)
dp += data[i];
else
dp = data[i];
if(dp>maxdp)
maxdp = dp;
}
return maxdp;
}
public static void main(String[] args){
int[] data = {1,-2,3,10,-4,7,2,-5};
System.out.println(findGreatestSumOfSumArrays(data));
}
}