连续子数组的最大值-C++-牛客BM72

本文介绍如何使用动态规划解决求解长度为n的整型数组中最大子数组和问题,通过维护当前连续和cursum并更新最大和ans,实现时间复杂度为O(n)和空间复杂度为O(n)。实例和代码示例如何在输入如[-2, 1, -3, 4, -1, 2, 1, -5, 4]的情况下找到最大和为6。
摘要由CSDN通过智能技术生成

一、题目

输入一个长度为n的整型数组array,数组中的一个或连续多个整数组成一个子数组,子数组最小长度为1。求所有子数组的和的最大值。

数据范围: 1<=n<=2×10^5

−100<=a[i]<=100

要求:时间复杂度为 O(n),空间复杂度为 O(n)

进阶:时间复杂度为 O(n),空间复杂度为 O(1)

示例1

输入:[1,-2,3,10,-4,7,2,-5]

返回值:18

说明:经分析可知,输入数组的子数组[3,10,-4,7,2]可以求得最大和为18

二、思路

设置一个当前连续序列的和cursum,表示当前一个连续子序列的和。从前向后遍历数组,将cursum加上当前位置的数据,如果cursum的值大于ans的值(ans记录出现过的最大连续序列的和),就用cursum的值更新ans的值,如果cursum的值小于0,则将cursum重新置0,并从下一个位置开始重新计算连续子序列的和(因为当前和为小于0,加上后面的只会变小,不会变大,所以重新开始计算)。

三、代码

class Solution {
public:
    int FindGreatestSumOfSubArray(vector<int> array) {
        int ans = array[0], cursum = 0;
        int len = array.size();
        for(int i=0; i<len; i++){
            cursum += array[i];
            if(cursum > ans) ans = cursum;
            if(cursum <= 0) cursum = 0;
        }
        return ans;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值