一、题目
输入一个长度为n的整型数组array,数组中的一个或连续多个整数组成一个子数组,子数组最小长度为1。求所有子数组的和的最大值。
数据范围: 1<=n<=2×10^5
−100<=a[i]<=100
要求:时间复杂度为 O(n),空间复杂度为 O(n)
进阶:时间复杂度为 O(n),空间复杂度为 O(1)
示例1
输入:[1,-2,3,10,-4,7,2,-5]
返回值:18
说明:经分析可知,输入数组的子数组[3,10,-4,7,2]可以求得最大和为18
二、思路
设置一个当前连续序列的和cursum,表示当前一个连续子序列的和。从前向后遍历数组,将cursum加上当前位置的数据,如果cursum的值大于ans的值(ans记录出现过的最大连续序列的和),就用cursum的值更新ans的值,如果cursum的值小于0,则将cursum重新置0,并从下一个位置开始重新计算连续子序列的和(因为当前和为小于0,加上后面的只会变小,不会变大,所以重新开始计算)。
三、代码
class Solution {
public:
int FindGreatestSumOfSubArray(vector<int> array) {
int ans = array[0], cursum = 0;
int len = array.size();
for(int i=0; i<len; i++){
cursum += array[i];
if(cursum > ans) ans = cursum;
if(cursum <= 0) cursum = 0;
}
return ans;
}
};