inp = np.array(['a', 'b', 'c', 'd', 'c', 'b'])
classes = set(inp) # 元素无重复
# 创建单位矩阵,每一行对应一个one-hot向量,将对应关系用字典存储
classes_dict = {c: np.identity(len(classes))[i, :] for i, c in enumerate(classes)}
# 将每个数据对应的标签表示成one-hot向量
one_hot = np.array(list(map(classes_dict.get, inp)), dtype=np.int32)