模型的两种误差bias和variance,underfitting和overfitting,如何调优

两种误差:bias、variance
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
对于无偏估计,离散结果的均值和方差为分布的均值和方差

优化:
在这里插入图片描述
在这里插入图片描述
Underfitting:
当training效果不好时,则有较大bias;
此时可以重新设计model:
1、增加更多feature作为输入
2、更复杂的model

Overfitting:
training效果好,testing效果不好,有较大variance
此时可以:
1、采集更多data
2、regularization(可能会增大bias)
function更平滑,可能不包含目标函数,调整regularization的weight,在variance和bias之间平衡

在这里插入图片描述
在这里插入图片描述
较少根据testing set来调参,而只使用training set和validation set来调参,因为
在这里插入图片描述
视频:
https://www.bilibili.com/video/BV1Ht411g7Ef?p=5&spm_id_from=pageDriver

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值