两种误差:bias、variance
对于无偏估计,离散结果的均值和方差为分布的均值和方差
优化:
Underfitting:
当training效果不好时,则有较大bias;
此时可以重新设计model:
1、增加更多feature作为输入
2、更复杂的model
Overfitting:
training效果好,testing效果不好,有较大variance
此时可以:
1、采集更多data
2、regularization(可能会增大bias)
function更平滑,可能不包含目标函数,调整regularization的weight,在variance和bias之间平衡
较少根据testing set来调参,而只使用training set和validation set来调参,因为
视频:
https://www.bilibili.com/video/BV1Ht411g7Ef?p=5&spm_id_from=pageDriver