约束优化问题的一阶条件(KKT条件)、互补松弛条件、拉格朗日对偶问题、SVM

简要概述

考虑约束优化问题时,可将等式拆解转化为不等式,方便求解,一阶时为KKT条件
KKT条件应用在SVM中

详细

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
——————
链接:
https://zhuanlan.zhihu.com/p/54135029?utm_source=qq&utm_medium=social&utm_oi=910237641331593216

简单解释:
在这里插入图片描述
在这里插入图片描述
——————
链接:
https://www.bilibili.com/video/BV1Tt4y127U1?spm_id_from=333.999.0.0&vd_source=fb42373bb401a9434d790d1cb2de2fd8

KKT条件中的互补松弛条件,乘子和约束式谁取0?

KKT条件中的互补松弛条件,乘子和约束式谁取0?
(1)如果最优解x使某个或某些不等式约束达到0,则意味着x位于这个或这些约束的边界,这样的约束称为active constraint。目标函数的梯度可以被所有active constraint的梯度线性表示,系数就是拉格朗日乘子,显然这些拉格朗日乘子非零。

(2)如果最优解x无法使某个或某些不等式约束达到0,则意味着x位于这个或这些约束的内部区域,这样的约束事实上不起作用,称为inactive constraint, 因此可以直接“扔掉”。用数学上的黑话来说,扔掉一个约束的方式就是该约束前的拉格朗日乘子取0。上述两种情况,都符合互补松弛条件。若二者同时达到0,则会出现active constraint被扔掉从而不work的逻辑悖论。

因此,实际中若最优解x使g(x)=0,则对应的拉格朗日乘子μ不为0;若最优解x使g(x)<0,则说明该约束不起作用,其对应拉格朗日乘子μ=0。

————————
作者:Qing Liu
https://www.zhihu.com/question/456421829/answer/1859721800

详细证明:
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
——————
链接:
https://zhuanlan.zhihu.com/p/367820569

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值