简要概述
考虑约束优化问题时,可将等式拆解转化为不等式,方便求解,一阶时为KKT条件
KKT条件应用在SVM中
详细
——————
链接:
https://zhuanlan.zhihu.com/p/54135029?utm_source=qq&utm_medium=social&utm_oi=910237641331593216
简单解释:
——————
链接:
https://www.bilibili.com/video/BV1Tt4y127U1?spm_id_from=333.999.0.0&vd_source=fb42373bb401a9434d790d1cb2de2fd8
KKT条件中的互补松弛条件,乘子和约束式谁取0?
(1)如果最优解x使某个或某些不等式约束达到0,则意味着x位于这个或这些约束的边界,这样的约束称为active constraint。目标函数的梯度可以被所有active constraint的梯度线性表示,系数就是拉格朗日乘子,显然这些拉格朗日乘子非零。
(2)如果最优解x无法使某个或某些不等式约束达到0,则意味着x位于这个或这些约束的内部区域,这样的约束事实上不起作用,称为inactive constraint, 因此可以直接“扔掉”。用数学上的黑话来说,扔掉一个约束的方式就是该约束前的拉格朗日乘子取0。上述两种情况,都符合互补松弛条件。若二者同时达到0,则会出现active constraint被扔掉从而不work的逻辑悖论。
因此,实际中若最优解x使g(x)=0,则对应的拉格朗日乘子μ不为0;若最优解x使g(x)<0,则说明该约束不起作用,其对应拉格朗日乘子μ=0。
————————
作者:Qing Liu
https://www.zhihu.com/question/456421829/answer/1859721800
详细证明:
——————
链接:
https://zhuanlan.zhihu.com/p/367820569