服务器有2张显卡,在别的虚拟环境部署运行了Xinference,然后又建个虚拟环境再部署一个可以吗?

环境:

云服务器Ubuntu系统

2张 NVIDIA H20 96GB

Qwen2.5-VL-72B-Instruct-AWQ Qint4量化

AWQ 是 “Activation - Aware Weight Quantization” 的缩写,即激活感知权重量化。它是一种针对大型模型的先进量化算法,通过在权重量化过程中引入对激活值的感知,最小化量化误差对模型输出的影响,实现在保持模型精度的同时,提高压缩比和推理速度提升。

问题描述:

服务器有2张显卡,在别的虚拟环境部署运行了Xinference,然后又建个虚拟环境再部署一个可以吗?

目前 xinference 的策略是只能运行一个模型
在这里插入图片描述

解决方案:

1. 可行性分析

  • 硬件条件:2 张显卡(如 NVIDIA T4/A10G)可以分配给不同实例。
### Xinference 安装与 Dify 集成教程 #### 一、环境准备 在开始之前,需确认已成功配置 NVIDIA GPU 环境,包括安装显卡驱动程序、CUDA 和 CuDNN。这些工具的版本应与所使用的 GPU 显卡兼容[^1]。 #### 二、Xinference 的安装 以下是 Xinference 的具体安装过程: 1. **创虚拟环境** 推荐使用 Python 虚拟环境来管理依赖项。 ```bash python -m venv xinference-env source xinference-env/bin/activate ``` 2. **安装 Xinference** 使用 pip 工具安装最新版 Xinference 库。 ```bash pip install xinference ``` 3. **验证安装** 运行以下命令以启动 Xinference 并测试其功能。 ```bash xi serve --model-type llm ``` 如果服务正常运行,则说明安装成功。 #### 三、Dify 的部署 按照官方文档完成 Dify 的基础部署工作。如果尚未完成此部分,请参考相关指南进行操作。 #### 四、Xinference 与 Dify 的集成 要实现两者的无缝协作,可以遵循以下方法: 1. **修改 Dify 配置文件** 打开 `dify/config.py` 文件,在其中指定模型加载路径以及接口地址。假设 Xinference 正常运行于本地服务器上,默认监听端口为 `8000`,则可设置如下参数: ```python MODEL_SERVER_URL = "http://localhost:8000" INFERENCE_ENGINE_TYPE = "xinference" ``` 2. **更新 API 密钥(如有必要)** 若启用了身份认证机制,则还需提供有效的 API Token 或密钥用于访问远程推理引擎实例。 3. **重启应用服务** 修改完成后重新启动整个应用程序堆栈,确保更改生效。 ```bash dify restart ``` 通过上述步骤即可顺利完成两者之间的对接,并充分发挥硬件资源的优势提升性能表现。 ```python import requests def query_model(prompt, model_server_url="http://localhost:8000"): payload = {"prompt": prompt} response = requests.post(f"{model_server_url}/v1/completions", json=payload) return response.json() result = query_model("What is the capital of France?") print(result["choices"][0]["text"]) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

玩人工智能的辣条哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值