斐波那契查询算法详解
斐波那契数列 :
斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家莱昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从 1963 年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。
斐波那契公式 : F[K] = F[K-1] + F[K-2]
代码实现 :
package com.readpdf.search;
import java.util.Arrays;
/**
* 斐波那契查找法
*
* @author zly
* @date 2020/12/29 15:50
*/
public class FibonacciSearch {
private static final int MAX_LENGTH = 20;
/**
* 获取斐波那契数列
*
* @return int []
*/
public static int[] fib() {
int[] arr = new int[MAX_LENGTH];
arr[0] = 1;
arr[1] = 1;
for (int i = 2; i < arr.length; i++) {
arr[i] = arr[i - 1] + arr[i - 2];
}
return arr;
}
public static void main(String[] args) {
int[] arr = {1, 3, 144, 666, 777, 8888, 999999};
System.out.println("index : " + fibSearch(arr, 8888));
}
/**
* 斐波那契查询法
*
* @param a 数组
* @param key 查询目标(值)
* @return 数组下标, 如果没有返回 -1
*/
public static int fibSearch(int[] a, int key) {
int low = 0;
int high = a.length - 1;
//标识斐波那契数组的下标
int k = 0;
//存放mid值
int mid = 0;
//斐波那契数列
int f[] = fib();
//获取黄金分割点下标
while (high > (f[k] - 1)) k++;
// 因为 F[K] 的值 > a 数列的长度,所以我们使用Arrays.copyof()
// 创建一个新数组并合并a数组,将其多出的部分填充为0
int[] temp = Arrays.copyOf(a, f[k]);
for (int i = high + 1; i < temp.length; i++) {
temp[i] = a[high];
}
//通过while循环处理,找到我们需要的数key
while (low <= high) {
mid = low + f[k - 1] - 1; // 4
if (key < temp[mid]) { // 777
high = mid - 1;
k--;
} else if (key > temp[mid]) {
low = mid + 1;
k -= 2;
} else {
return Math.min(mid, high);
}
}
return -1;
}
}
注意事项 :
斐波那契查询算法只适用于有序数组.