斐波那契查询算法详解

斐波那契查询算法详解

斐波那契数列 :

斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家莱昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……在数学上,斐波那契数列以如下被以递推的方法定义:F(0)=0,F(1)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 2,n ∈ N*)在现代物理、准晶体结构、化学等领域,斐波纳契数列都有直接的应用,为此,美国数学会从 1963 年起出版了以《斐波纳契数列季刊》为名的一份数学杂志,用于专门刊载这方面的研究成果。

斐波那契公式 : F[K] = F[K-1] + F[K-2]

在这里插入图片描述

在这里插入图片描述

代码实现 :
package com.readpdf.search;

import java.util.Arrays;

/**
 * 斐波那契查找法
 *
 * @author zly
 * @date 2020/12/29 15:50
 */
public class FibonacciSearch {

    private static final int MAX_LENGTH = 20;

    /**
     * 获取斐波那契数列
     *
     * @return int []
     */
    public static int[] fib() {

        int[] arr = new int[MAX_LENGTH];

        arr[0] = 1;
        arr[1] = 1;

        for (int i = 2; i < arr.length; i++) {
            arr[i] = arr[i - 1] + arr[i - 2];
        }

        return arr;
    }


    public static void main(String[] args) {

        int[] arr = {1, 3, 144, 666, 777, 8888, 999999};

        System.out.println("index : " + fibSearch(arr, 8888));

    }

    /**
     * 斐波那契查询法
     *
     * @param a   数组
     * @param key 查询目标(值)
     * @return 数组下标, 如果没有返回 -1
     */
    public static int fibSearch(int[] a, int key) {
        
        int low = 0;
        int high = a.length - 1;
        
        //标识斐波那契数组的下标
        int k = 0;
        //存放mid值
        
        int mid = 0;
        //斐波那契数列
        int f[] = fib();

        //获取黄金分割点下标
        while (high > (f[k] - 1)) k++;
        
        // 因为 F[K] 的值 > a 数列的长度,所以我们使用Arrays.copyof()
        // 创建一个新数组并合并a数组,将其多出的部分填充为0
        int[] temp = Arrays.copyOf(a, f[k]);

        for (int i = high + 1; i < temp.length; i++) {
            temp[i] = a[high];
        }

        //通过while循环处理,找到我们需要的数key
        while (low <= high) {

            mid = low + f[k - 1] - 1; // 4

            if (key < temp[mid]) {  // 777

                high = mid - 1;

                k--;
            } else if (key > temp[mid]) {

                low = mid + 1;
                k -= 2;

            } else {
                return Math.min(mid, high);
            }
        }
        return -1;
    }
}

注意事项 :

​ 斐波那契查询算法只适用于有序数组.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值