目录
前文:
流式处理的王者,适应各种复杂场景。
相关代码案例:https://github.com/CesarChoy/flinkdemo
一、概念
1.1 架构及调度
1.2 执行图
1.3 基本流程
二、状态与容错
2.1 状态一致性
备注:业务的保证,数据一致性的基石。
2.2 Checkpoint与Savepoint
备注:Checkpoint设置检查点(保存参数),savepoint用于手动中断恢复作业。
2.3 State Backends
备注:算子状态保存的位置。
2.4 State
备注:算子状态
三、API
3.1 参数及变量
备注:程序获取公共参数到传递参数
3.2 DataStream API
备注:底层自定义代码
3.3 DataSet API
备注:不同的启动环境,调用的API不同
互转:
3.4 Table API
两种Planner的区别:1.10版本完成迭代
四、Watermark与window
4.1 Watermark
备注:如果是事件时间需要设置watermark
4.2 window
备注:在时间语义下,可以划分窗口。
五、其他特性
5.1 CEP
备注:优秀的机制可以应用于各种复杂的事件监控场景。