合并方差

B y   C h e s i u m \mathsf{By\ Chesium} By Chesium
2022-06-19
S S \mathbb{SS} SS

参考:均值和方差的计算(已知两样本标准差,求总体标准差)- CSDN
nwpu061701

在其基础上添加了过程注释,简化了一部分化简步骤。


已知 x 1 , … , x n x_1,\dots,x_n x1,,xn 的均值 x ˉ \bar x xˉ y 1 , … , y m y_1,\dots,y_m y1,,ym 的均值 y ˉ \bar y yˉ,以及其分别的方差 σ x 2 , σ y 2 \sigma_x^2,\sigma_y^2 σx2,σy2。求 x x x y y y 总体的均值 z ˉ \bar z zˉ 和方差 σ z 2 \sigma_z^2 σz2

我们先分别写出 x ˉ , y ˉ , σ x 2 , σ y 2 \bar x,\bar y,\sigma_x^2,\sigma_y^2 xˉ,yˉ,σx2,σy2 的表达式:

x ˉ = 1 n ∑ i = 1 n x i y ˉ = 1 n ∑ i = 1 m y i σ x 2 = 1 n ∑ i = 1 n ( x i − x ˉ ) 2 1 σ y 2 = 1 n ∑ i = 1 m ( y i − y ˉ ) 2 2 \begin{aligned} \bar x&=\frac{1}{n}\sum_{i=1}^nx_i &\\ \bar y&=\frac{1}{n}\sum_{i=1}^my_i &\\ \sigma_x^2&=\frac{1}{n}\sum_{i=1}^n(x_i-\bar x)^2 &\qquad\boxed{1}\\ \sigma_y^2&=\frac{1}{n}\sum_{i=1}^m(y_i-\bar y)^2 &\qquad\boxed{2}\\ \end{aligned} xˉyˉσx2σy2=n1i=1nxi=n1i=1myi=n1i=1n(xixˉ)2=n1i=1m(yiyˉ)212

我们先来求均值 z ˉ \bar z zˉ

z ˉ = 1 n + m ( ∑ i = 1 n x i + ∑ i = 1 m y i ) = n x ˉ + m y ˉ n + m \begin{aligned} \bar z&=\frac{1}{n+m}(\sum_{i=1}^nx_i+\sum_{i=1}^my_i)\\ &=\frac{n\bar x+m\bar y}{n+m} \end{aligned} zˉ=n+m1(i=1nxi+i=1myi)=n+mnxˉ+myˉ

然后是方差 σ z 2 \sigma_z^2 σz2

( n + m ) σ z 2 = ∑ i = 1 n ( x i − z ˉ ) 2 + ∑ i = 1 m ( y i − z ˉ ) 2 3 (n+m)\sigma_z^2= \sum_{i=1}^n(x_i-\bar z)^2 +\sum_{i=1}^m(y_i-\bar z)^2\qquad\boxed{3} (n+m)σz2=i=1n(xizˉ)2+i=1m(yizˉ)23

3 − n 1 − m 2 \boxed{3}-n\boxed{1}-m\boxed{2} 3n1m2 得:

( n + m ) σ z 2 − n σ x 2 − m σ y 2 = ∑ i = 1 n ( x i − z ˉ ) 2 + ∑ i = 1 m ( y i − z ˉ ) 2 − ∑ i = 1 n ( x i − x ˉ ) 2 − ∑ i = 1 m ( y i − y ˉ ) 2 合并第一、三项和二、四项 = ∑ i = 1 n [ ( x i − z ˉ ) 2 − ( x i − x ˉ ) 2 ] + ∑ i = 1 m [ ( y i − z ˉ ) 2 − ( y i − y ˉ ) 2 ] 使用平方差公式展开,合并同类项 = ∑ i = 1 n ( x i − z ˉ + x i − x ˉ ) ( x i − z ˉ − x i + x ˉ ) + ∑ i = 1 m ( y i − z ˉ + y i − y ˉ ) ( y i − z ˉ − y i + y ˉ ) = ∑ i = 1 n ( 2 x i − z ˉ − x ˉ ) ( x ˉ − z ˉ ) + ∑ i = 1 m ( 2 y i − z ˉ − y ˉ ) ( y ˉ − z ˉ ) 将无关项从和式中移出,化简 = ( x ˉ − z ˉ ) ∑ i = 1 n ( 2 x i − z ˉ − x ˉ ) + ( y ˉ − z ˉ ) ∑ i = 1 m ( 2 y i − z ˉ − y ˉ ) = ( x ˉ − z ˉ ) ( 2 ∑ i = 1 n x i − n z ˉ − n x ˉ ) + ( y ˉ − z ˉ ) ( 2 ∑ i = 1 m y i − m z ˉ − m y ˉ ) = ( x ˉ − z ˉ ) ( 2 n x ˉ − n z ˉ − n x ˉ ) + ( y ˉ − z ˉ ) ( 2 m y ˉ − m z ˉ − m y ˉ ) = n ( x ˉ − z ˉ ) ( x ˉ − z ˉ ) + m ( y ˉ − z ˉ ) ( y ˉ − z ˉ ) = n ( x ˉ − z ˉ ) 2 + m ( y ˉ − z ˉ ) 2 展开  z ˉ ,通分 = n ( x ˉ − n x ˉ + m y ˉ n + m ) 2 + m ( y ˉ − n x ˉ + m y ˉ n + m ) 2 = n ( ( n + m ) x ˉ n + m − n x ˉ + m y ˉ n + m ) 2 + m ( ( n + m ) y ˉ n + m − n x ˉ + m y ˉ n + m ) 2 = n ( m x ˉ − m y ˉ n + m ) 2 + m ( n y ˉ − n x ˉ n + m ) 2 = m 2 n ( x ˉ − y ˉ n + m ) 2 + m n 2 ( y ˉ − x ˉ n + m ) 2 = ( m 2 n + m n 2 ) ( x ˉ − y ˉ n + m ) 2 = m n ( n + m ) ( x ˉ − y ˉ ) 2 ( n + m ) 2 = m n ( x ˉ − y ˉ ) 2 n + m \begin{aligned} &(n+m)\sigma_z^2-n\sigma_x^2-m\sigma_y^2\\ =&\sum_{i=1}^n(x_i-\bar z)^2 +\sum_{i=1}^m(y_i-\bar z)^2 -\sum_{i=1}^n(x_i-\bar x)^2 -\sum_{i=1}^m(y_i-\bar y)^2\\ &\text{合并第一、三项和二、四项}\\ =&\sum_{i=1}^n[(x_i-\bar z)^2-(x_i-\bar x)^2] +\sum_{i=1}^m[(y_i-\bar z)^2-(y_i-\bar y)^2]\\ &\text{使用平方差公式展开,合并同类项}\\ =&\sum_{i=1}^n(x_i-\bar z+x_i-\bar x)(x_i-\bar z-x_i+\bar x) +\sum_{i=1}^m(y_i-\bar z+y_i-\bar y)(y_i-\bar z-y_i+\bar y)\\ =&\sum_{i=1}^n(2x_i-\bar z-\bar x)(\bar x-\bar z) +\sum_{i=1}^m(2y_i-\bar z-\bar y)(\bar y-\bar z)\\ &\text{将无关项从和式中移出,化简}\\ =&(\bar x-\bar z)\sum_{i=1}^n(2x_i-\bar z-\bar x) +(\bar y-\bar z)\sum_{i=1}^m(2y_i-\bar z-\bar y)\\ =&(\bar x-\bar z)(2\sum_{i=1}^nx_i-n\bar z-n\bar x) +(\bar y-\bar z)(2\sum_{i=1}^my_i-m\bar z-m\bar y)\\ =&(\bar x-\bar z)(2n\bar x-n\bar z-n\bar x) +(\bar y-\bar z)(2m\bar y-m\bar z-m\bar y)\\ =&n(\bar x-\bar z)(\bar x-\bar z) +m(\bar y-\bar z)(\bar y-\bar z)\\ =&n(\bar x-\bar z)^2 +m(\bar y-\bar z)^2\\ &\text{展开}\ \bar z\text{,通分}\\ =&n(\bar x-\frac{n\bar x+m\bar y}{n+m})^2 +m(\bar y-\frac{n\bar x+m\bar y}{n+m})^2\\ =&n(\frac{(n+m)\bar x}{n+m}-\frac{n\bar x+m\bar y}{n+m})^2 +m(\frac{(n+m)\bar y}{n+m}-\frac{n\bar x+m\bar y}{n+m})^2\\ =&n(\frac{m\bar x-m\bar y}{n+m})^2 +m(\frac{n\bar y-n\bar x}{n+m})^2\\ =&m^2n(\frac{\bar x-\bar y}{n+m})^2 +mn^2(\frac{\bar y-\bar x}{n+m})^2\\ =&(m^2n+mn^2)(\frac{\bar x-\bar y}{n+m})^2\\ =&mn(n+m)\frac{(\bar x-\bar y)^2}{(n+m)^2}\\ =&\frac{mn(\bar x-\bar y)^2}{n+m}\\ \end{aligned} ================(n+m)σz2nσx2mσy2i=1n(xizˉ)2+i=1m(yizˉ)2i=1n(xixˉ)2i=1m(yiyˉ)2合并第一、三项和二、四项i=1n[(xizˉ)2(xixˉ)2]+i=1m[(yizˉ)2(yiyˉ)2]使用平方差公式展开,合并同类项i=1n(xizˉ+xixˉ)(xizˉxi+xˉ)+i=1m(yizˉ+yiyˉ)(yizˉyi+yˉ)i=1n(2xizˉxˉ)(xˉzˉ)+i=1m(2yizˉyˉ)(yˉzˉ)将无关项从和式中移出,化简(xˉzˉ)i=1n(2xizˉxˉ)+(yˉzˉ)i=1m(2yizˉyˉ)(xˉzˉ)(2i=1nxinzˉnxˉ)+(yˉzˉ)(2i=1myimzˉmyˉ)(xˉzˉ)(2nxˉnzˉnxˉ)+(yˉzˉ)(2myˉmzˉmyˉ)n(xˉzˉ)(xˉzˉ)+m(yˉzˉ)(yˉzˉ)n(xˉzˉ)2+m(yˉzˉ)2展开 zˉ,通分n(xˉn+mnxˉ+myˉ)2+m(yˉn+mnxˉ+myˉ)2n(n+m(n+m)xˉn+mnxˉ+myˉ)2+m(n+m(n+m)yˉn+mnxˉ+myˉ)2n(n+mmxˉmyˉ)2+m(n+mnyˉnxˉ)2m2n(n+mxˉyˉ)2+mn2(n+myˉxˉ)2(m2n+mn2)(n+mxˉyˉ)2mn(n+m)(n+m)2(xˉyˉ)2n+mmn(xˉyˉ)2

移项,使等式左边只留下我们需要求的方差 σ z 2 \sigma_z^2 σz2

( n + m ) σ z 2 − n σ x 2 − m σ y 2 = m n ( x ˉ − y ˉ ) 2 n + m ( n + m ) σ z 2 = n σ x 2 + m σ y 2 + m n ( x ˉ − y ˉ ) 2 n + m σ z 2 = n σ x 2 + m σ y 2 + m n ( x ˉ − y ˉ ) 2 n + m n + m \begin{aligned} (n+m)\sigma_z^2-n\sigma_x^2-m\sigma_y^2 &=\frac{mn(\bar x-\bar y)^2}{n+m}\\ (n+m)\sigma_z^2 &=n\sigma_x^2+m\sigma_y^2 +\frac{mn(\bar x-\bar y)^2}{n+m}\\ \sigma_z^2&= \frac{n\sigma_x^2+m\sigma_y^2 +\frac{mn(\bar x-\bar y)^2}{n+m} }{n+m} \end{aligned} (n+m)σz2nσx2mσy2(n+m)σz2σz2=n+mmn(xˉyˉ)2=nσx2+mσy2+n+mmn(xˉyˉ)2=n+mnσx2+mσy2+n+mmn(xˉyˉ)2

综上所述:

z ˉ = n x ˉ + m y ˉ n + m σ z 2 = n σ x 2 + m σ y 2 + m n ( x ˉ − y ˉ ) 2 n + m n + m \begin{aligned} \bar z&=\frac{n\bar x+m\bar y}{n+m}\\ \sigma_z^2&= \frac{n\sigma_x^2+m\sigma_y^2 +\frac{mn(\bar x-\bar y)^2}{n+m} }{n+m} \end{aligned} zˉσz2=n+mnxˉ+myˉ=n+mnσx2+mσy2+n+mmn(xˉyˉ)2

全文完。

  • 6
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
以下是比较两个总体均值差异显著性检验的函数的代码: ```R two_sample_t_test <- function(data, alpha = 0.05) { # 计算样本1和样本2的均值和方差 mean1 <- mean(data[[1]]) mean2 <- mean(data[[2]]) var1 <- var(data[[1]]) var2 <- var(data[[2]]) # 合并方差 pooled_var <- ((length(data[[1]]) - 1) * var1 + (length(data[[2]]) - 1) * var2) / (length(data[[1]]) + length(data[[2]]) - 2) # 计算检验统计量 t_stat <- (mean1 - mean2) / (sqrt(pooled_var) * sqrt(1/length(data[[1]]) + 1/length(data[[2]]))) # 计算 t 分布临界值 t_critical <- qt(1 - alpha/2, df = length(data[[1]]) + length(data[[2]]) - 2, lower.tail = FALSE) # 判断是否拒绝原假设 if (abs(t_stat) > t_critical) { conclusion <- "拒绝原假设,两个总体均值不相等" } else { conclusion <- "接受原假设,两个总体均值相等" } # 输出结果 cat("样本1均值:", mean1, "\n") cat("样本2均值:", mean2, "\n") cat("样本1方差:", var1, "\n") cat("样本2方差:", var2, "\n") cat("合并方差:", pooled_var, "\n") cat("检验统计量:", t_stat, "\n") cat("t分布临界值:", t_critical, "\n") cat("结论:", conclusion, "\n") } ``` 使用该函数,可以进行两个总体均值差异显著性检验。例如,假设我们有两个数据文件 data1 和 data2,它们分别包含两个样本的数据,我们可以按照如下方式进行检验: ```R data1 <- list(x = c(1, 2, 3, 4, 5), y = c(2, 3, 4, 5, 6)) data2 <- list(x = c(1, 2, 3, 4, 5), y = c(3, 4, 5, 6, 7)) two_sample_t_test(data1) two_sample_t_test(data2, alpha = 0.01) ``` 这里默认显著性水平为 0.05,第二次调用函数时设置显著性水平为 0.01。函数将输出每个样本的均值和方差合并方差、检验统计量、t 分布临界值和结论。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Chesium

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值