均值和方差的计算(已知两样本标准差,求总体标准差)

假设总体z_{1}...z_{m+n}数量为(m+n),其只包含两个亚组(x_{1}...x_{n}y_{1}...y_{m}),第一组x_{1}...x_{n}的平均值和标准差分别为\bar{x}\sigma_{x},第二组y_{1}...y_{m}的平均值和标准差分别为\bar{y}\sigma_{y},则总体的平均值\bar{z}和标准差\sigma_{z}是多少呢?

先给答案:

\bar{z}=\frac{n\bar{x}+m\bar{y}}{m+n}\sigma_{z}=\sqrt{\frac{n\sigma_{x}^{2}+m\sigma_{y}^{2}+\frac{mn(\bar{x}-\bar{y})^{2}}{m+n}}{m+n}}

平均值推导过程:

\bar{z}=\frac{\sum_{i=1}^{n}x_{i}+\sum_{i=1}^{m}y_{i}}{m+n}=\frac{n\bar{x}+m\bar{y}}{m+n}

标准差推导过程:

(m+n)\sigma_{z}^{2}=(x_{1}-\bar{z})^{2}+...+(x_{n}-\bar{z})^{2}+(y_{1}-\bar{z})^{2}+...+(y_{m}-\bar{z})^{2}

(n)\sigma_{x}^{2}=(x_{1}-\bar{x})^{2}+...+(x_{n}-\bar{x})^{2}

(m)\sigma_{y}^{2}=(y_{1}-\bar{y})^{2}+...+(y_{m}-\bar{y})^{2}

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=\{(x_{1}-\bar{z})^{2}-(x_{1}-\bar{x})^{2}\}+...+\{(x_{n}-\bar{z})^{2}-(x_{n}-\bar{x})^{2}\}+\{(y_{1}-\bar{z})^{2}-(y_{1}-\bar{y})^{2}\}+...+\{(y_{m}-\bar{z})^{2}-(y_{m}-\bar{y})^{2}\}

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=\{(x_{1}-\bar{z}+x_{1}-\bar{x})(x_{1}-\bar{z}-x_{1}+\bar{x})\}+...+\{(x_{n}-\bar{z}+x_{n}-\bar{x})(x_{n}-\bar{z}-x_{n}+\bar{x})\}+\{(y_{1}-\bar{z}+y_{1}-\bar{y})(y_{1}-\bar{z}-y_{1}+\bar{y})\}+...+\{(y_{m}-\bar{z}+y_{m}-\bar{y})(y_{m}-\bar{z}-y_{m}+\bar{y})\}

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=\{(2x_{1}-\bar{z}-\bar{x})(\bar{x}-\bar{z})\}+...+\{(2x_{n}-\bar{z}-\bar{x})(\bar{x}-\bar{z})\}+\{(2y_{1}-\bar{z}-\bar{y})(\bar{y}-\bar{z})\}+...+\{(2y_{m}-\bar{z}-\bar{y})(\bar{y}-\bar{z})\}

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=\sum_{i=1}^{n}\{(2x_{i}-\bar{z}-\bar{x})(\bar{x}-\bar{z})\}+\sum_{i=1}^{m}\{(2y_{i}-\bar{z}-\bar{y})(\bar{y}-\bar{z})\}

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=(2n\bar{x}-n\bar{z}-n\bar{x})(\bar{x}-\bar{z})+(2m\bar{y}-m\bar{z}-m\bar{y})(\bar{y}-\bar{z})

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=(n\bar{x}-n\bar{z})(\bar{x}-\bar{z})+(m\bar{y}-m\bar{z})(\bar{y}-\bar{z})

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=n(\bar{x}-\bar{z})^{^{2}}+m(\bar{y}-\bar{z})^{^{2}}

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=n(\frac{m\bar{x}+n\bar{x}-n\bar{x}-m\bar{y}}{m+n} )^{^{2}}+m(\frac{m\bar{y}+n\bar{y}-n\bar{x}-m\bar{y}}{m+n})^{^{2}}

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=n(\frac{m\bar{x}-m\bar{y}}{m+n} )^{^{2}}+m(\frac{n\bar{y}-n\bar{x}}{m+n})^{^{2}}

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=\frac{m^{^{2}}n\bar{x}^{^{2}}-2m^{^{2}}n\bar{x}\bar{y}+m^{^{2}}n\bar{y}^{^{2}}+mn^{^{2}}\bar{y}^{^{2}}-2mn^{^{2}}\bar{x}\bar{y}+mn^{^{2}}\bar{x}^{^{2}}}{(m+n)^{^{2}} }

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=\frac{(m+n)mn\bar{x}^{^{2}}-(m+n)*2mn\bar{x}\bar{y}+(m+n)mn\bar{y}^{^{2}}}{(m+n)^{^{2}} }

(m+n)\sigma_{z}^{2}-n\sigma_{x}^{2}-m\sigma_{y}^{2}=\frac{mn\bar{x}^{^{2}}-2mn\bar{x}\bar{y}+mn\bar{y}^{^{2}}}{m+n}

\sigma_{z}=\sqrt{\frac{n\sigma_{x}^{2}+m\sigma_{y}^{2}+\frac{mn(\bar{x}-\bar{y})^{2}}{m+n}}{m+n}}

以上为推导过程,如果问题,欢迎反馈。

 

  • 29
    点赞
  • 52
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值