java 求圆周率π,用祖冲之的方式

本文介绍了通过内切圆的方式求解圆周率的方法,类似于祖冲之的算法。通过不断切割多边形以逼近圆周,计算过程中涉及到大量的开方运算。文中提供了一个Java代码示例,演示如何计算圆周率,精确到小数点后七位。随着切割次数的增加,计算量显著增大,如果需要更高精度,则需要使用BigDecimal避免浮点数误差。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

背景介绍:        

        祖冲之也是使用类似的思路求的圆周率,这种方式绕不开的地方就是需要对小数进行开方运算,现代人使用阿拉伯数字完成一次14位小数的开方运算需要两天以上的时间(开方精确到7最少需要保留14位),而求圆周率精确到小数点后七位,最少需要切割12次,而每次有需要最少两次开方运算和两次平方运算,可见计算量有多么庞大。

评估计算难度如下:

        3 (一次开方用三天)* 12  (切12次)* 2 (2次开方),完成一次简单的计算最少也需要两个月左右,再加上其它运算,算完还需要进行最少一次的验算,这个计算量想想都可怕。

        西方很多人对祖冲之的成果提出了怀疑,主要的依据也是认为计算难度太大了,觉得古代人没有办法完成这么复杂的计算量,但是在祖冲之前杨辉已经提出了手动开方的方法,祖冲之父子改良后完成圆周率计算应该是可行的,只是具体的算法失传了,所以现在也没有一个定论。

1. 什么是圆周率:

        圆的周长除以圆的直径,祖冲之采用内切圆的方式将圆周率精确到了3.1415926。

2.什么是内切圆求圆周:

 ·       如图:随着切割次数的增加多边形的周长会无限接近圆的周长,因此我们只要能求出多边形的周长即可求出圆周率。

3.如何求内切多边形的周长

         如图:多边形的边长等于半径乘以圆心角一半的正弦,即需要求出sin α/2,就可以求出边长,因为四等分时圆心角为90度,随着切割次数的增加,圆心角为90度除以切割次数。因此只需要求出sin 45/k (k为切割次数),即可以求出多边形边长。

4.如何求sin 45/k 的值。

         如图: 只需要依次求出斜边长就可以求sin 45/k,根据勾股定理可以通过第k-1次的斜边,求出第k次的斜边。第k+1次斜边长公司如下:

    

Math.sqrt 是Java的开方, 转为java:

 Math.sqrt( 2 * sex * sex  + 2 * Math.sqrt(sex * sex - 1) * sex) (sex为第k次斜边长)

因为对边为1,所以sex就位正割(三角函数)

那么切割k次的多边形周长为  第k+1 次的  正割倒数 * 半径 * 2

5 java 求圆周率代码

public static void main(String[] args) {
    double sex = Math.sqrt(2); //45度角的 斜边长
    long k = 25; //切割次数
    int numberOfSides = 4 << k; //多边形边数
    for (int i = 0 ; i <= k; i ++){
        sex = Math.sqrt( 2 * sex * sex  + 2 * Math.sqrt(sex * sex - 1) * sex) ;
    }
    System.out.println( numberOfSides * 2  / sex );
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值