背景介绍:
祖冲之也是使用类似的思路求的圆周率,这种方式绕不开的地方就是需要对小数进行开方运算,现代人使用阿拉伯数字完成一次14位小数的开方运算需要两天以上的时间(开方精确到7最少需要保留14位),而求圆周率精确到小数点后七位,最少需要切割12次,而每次有需要最少两次开方运算和两次平方运算,可见计算量有多么庞大。
评估计算难度如下:
3 (一次开方用三天)* 12 (切12次)* 2 (2次开方),完成一次简单的计算最少也需要两个月左右,再加上其它运算,算完还需要进行最少一次的验算,这个计算量想想都可怕。
西方很多人对祖冲之的成果提出了怀疑,主要的依据也是认为计算难度太大了,觉得古代人没有办法完成这么复杂的计算量,但是在祖冲之前杨辉已经提出了手动开方的方法,祖冲之父子改良后完成圆周率计算应该是可行的,只是具体的算法失传了,所以现在也没有一个定论。
1. 什么是圆周率:
圆的周长除以圆的直径,祖冲之采用内切圆的方式将圆周率精确到了3.1415926。
2.什么是内切圆求圆周:
· 如图:随着切割次数的增加多边形的周长会无限接近圆的周长,因此我们只要能求出多边形的周长即可求出圆周率。
3.如何求内切多边形的周长
如图:多边形的边长等于半径乘以圆心角一半的正弦,即需要求出sin α/2,就可以求出边长,因为四等分时圆心角为90度,随着切割次数的增加,圆心角为90度除以切割次数。因此只需要求出sin 45/k (k为切割次数),即可以求出多边形边长。
4.如何求sin 45/k 的值。
如图: 只需要依次求出斜边长就可以求sin 45/k,根据勾股定理可以通过第k-1次的斜边,求出第k次的斜边。第k+1次斜边长公司如下:
Math.sqrt 是Java的开方, 转为java:
Math.sqrt( 2 * sex * sex + 2 * Math.sqrt(sex * sex - 1) * sex) (sex为第k次斜边长)
因为对边为1,所以sex就位正割(三角函数)
那么切割k次的多边形周长为 第k+1 次的 正割倒数 * 半径 * 2
5 java 求圆周率代码
public static void main(String[] args) {
double sex = Math.sqrt(2); //45度角的 斜边长
long k = 25; //切割次数
int numberOfSides = 4 << k; //多边形边数
for (int i = 0 ; i <= k; i ++){
sex = Math.sqrt( 2 * sex * sex + 2 * Math.sqrt(sex * sex - 1) * sex) ;
}
System.out.println( numberOfSides * 2 / sex );
}