对“超图学习”相关优势及适用范围的学习及整理

超图结构因其强大的非线性高阶关联挖掘能力,被广泛应用于数据分类和检索任务。它能更准确地描述现实生活中复杂的多元关联关系,弥补普通图在表示数据相关性上的局限。超图神经网络如Hypergraph Neural Networks (HGNN)和Dynamic Hypergraph Neural Networks (DHGNN)等模型,展示了在处理多模态和复杂数据关联时的优势。这些模型通过超边卷积等操作,学习高阶数据表示,适用于多模态学习任务,如引文网络分类和社交媒体情感预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

主要参考的文献为高跃老师实验室发表的多篇论文,以及最新的超图相关论文;

[1] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, Yue Gao, Hypergraph Neural Networks, AAAI, 2019.

[2] Jianwen Jiang, Yuxuan Wei, Yifan Feng, Jingxuan Cao, Yue Gao, Dynamic Hypergraph Neural Networks, IJCAI, 2019.

[3] Ruochi Zhang,Yuesong Zou,Jian Ma. Hyper-SAGNN: a self-attention based graph  neural network for hypergraphs, ICLR, 2020

[4] Manh Tuan Do, Se-eun Yoon, Bryan Hooi, Kijung Shin. Structural Patterns and     Generative Models of Real-world Hypergraphs, KDD, 2020

[5] Eun-Sol Kim, Woo Young Kang, Kyoung-Woon On,et al. HAN: Hypergraph Attention Networks for Multimodal Learning, CVPR, 2020

 

正文如下:

超图是一种广义的图结构,因其具有较强的数据样本间非线性高阶关联的刻画和挖掘能力而被广泛应用于数据分类、检索等任务中。针对这一技术及其在多领域中的应用,首先介绍基于超图结构的多种建模方法,特别是基于单模态和多模态环境下的数据关联建模机制。进一步,围绕超图上的关联学习介绍从传统的学习方法到超图结构学习的系列算法。针对实际应用中存在的数据样本不平衡、分类代价敏感、数据关联建模复杂等挑战,介绍了基于代价敏感信息的超图学习及动态超图结构学习方法。

在计算机视觉和机器学习的问题中,我们一般假设对象之间的之间无关联关系或者为简单的二元关联关系,在该假设下,我们可以通过普通图解决很多问题。但是,在现实生活中对象之间的关系往往是更为复杂的单对多或者多对多的多元关联关系。在解决该类问题时,如果简单的把多元关系强制转换为二元关联关系,那么将会丢失很多有用的

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值