自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(563)
  • 收藏
  • 关注

原创 如何用大模型自动生成PPT?AutoPresent及SlideCoder方案

我们来看文档智能进展,上次是paper2poster,这次是用来做ppt。从工程上来说,。通过这种方法,可以控制幻灯片的每一个细节,包括文本内容、图像、视觉布局、颜色等。但可以进一步自动化,例如很直观的做法,就是直接做大模型微调,核心在于,但是,简单微调,并不能捕捉细节信息,这也说明PPT生成并非易事,还需要做很多事情,难点还是有很多。例如,。想做好并不容易,所以,可以看看两个方案,有一些思路。

2025-06-13 10:17:32 565

原创 使用成本降至三分之一!字节大模型,重磅更新!

豆包大模型重磅升级,并推出创新性的“区间定价”模式,打响了一场平衡成本与性能的“价值战”。6月11日,字节跳动旗下火山引擎举办Force原动力大会。会上,豆包大模型家族全面升级,火山引擎发布了豆包大模型1.6、豆包视频生成模型Seedance 1.0 Pro、实时语音与播客等新模型,并升级了Agent(智能体)开发平台等AI云原生服务。除了主论坛外,本次大会还将举办多场从技术革新到行业场景落地的分论坛,涉及芯片、汽车、智能终端、软件应用等领域的众多企业合作伙伴。

2025-06-12 10:18:51 807

原创 涉及AI-Agent、大模型过度思考、多模态后训练、测试时扩展等热门研究

紧跟技术发展趋势,快速了解大模型最新动态。、金融CoT推理基准、、图推理归因分析、长文本推理能力提升、、大模型**「表格问答能力提升」**等热门研究。大型语言模型(LLMs)在众多任务上表现接近人类且能进行通用对话,但AI Agent系统多是让语言模型重复执行少量特定任务,变化较少。本文作者提出,并且在需要通用对话能力时,异构代理系统(调用多种不同模型的代理)是自然选择,还讨论了SLMs在代理型系统采用的潜在障碍并概述了从LLM到SLM代理的通用转换算法。

2025-06-10 13:53:22 793

原创 有医院已投入近千万元预算!谁在为AI医疗大模型买单?

今年上半年,医疗AI大模型成为各家医院争相布局的热门赛道。截至目前,包括上海中山、瑞金、仁济在内的头部三甲医院都高调发布了心血管、病理、泌尿科等不同疾病领域的AI模型,而为这些大模型提供软件和算力支持的企业也逐渐浮出水面。第一财经记者从采访中了解到,为AI医疗大模型买单的头部三甲医院并不多,而通过公开信息搜索,记者发现,动辄投入数百万元预算采购医疗大模型的大部分都为地方政府的采购项目。常州市第一人民医院已于今年上半年先后启动两项公开招标,采购AI医疗大模型平台,整体预算接近1000万人民币。

2025-06-10 13:42:46 655

原创 破解大模型推理谜团:AI“思考”的透明性与安全性

近年来,大语言模型(LLMs)如GPT-4、Claude等,展现了超凡的推理、写作和决策能力。但即便是其研发团队,也无法以人类可理解的方式解释“为什么模型会做出某个决定”。AI日益成为医疗、法律、金融等高风险领域的助力,其不透明的思维过程却带来巨大的安全与伦理挑战。本推文基于最新前沿文献,系统梳理了LLM推理的黑箱问题、模型涌现能力的争议、链式推理表达的“诚实度”、Transformer的推理机制与对齐干预、最新可解释性方法,以及对安全部署与合规的深远影响,帮助专业人士准确理解并安全利用AI。

2025-06-09 21:19:18 1100

原创 LoRA微调Qwen3 Embedding,效果炸裂~

最近 Qwen 又有大动作,发布 Qwen3 Embedding 系列模型,而且 MTEB 排行榜上获取多个第一,最重要的还是模型全系列开源。不得不说 Qwen 可能已经完成 rag(Retrieval-Augmented Generation)技术栈的大一统了。真香啊,接下来笔者会简单介绍一下 Qwen3 Embedding 系列模型,同时实战将 Qwen3 Embeding 的向量模型采用 lora 的方式微调成一个领域 Embeding 模型,让模型在这个领域的语义搜索性能进一步提升。

2025-06-09 21:13:07 664

原创 多智能体真不是概念股,github上top5多智能体框架总结!

gitbub上最火的5个多智能体框架MetaGPT、agno、ChatDev、owl、camel,截至今天star数分别为56.1k、27.7k、27.0k、16.8k、12.8k。每个都在1w star以上!试想,你只需输入一句“Create a 2048 game”,就能自动生成一个完整的游戏项目仓库,包含用户故事、代码架构、API文档等全流程产出。这不是科幻场景,而是MetaGPT的真实能力展示。(图示:MetaGPT模拟软件公司协作流程,从需求到代码的全链路产出)此外还可以构建AI狼人杀、AI辩论

2025-06-07 11:39:05 930

原创 Llama3-8b大模型微调保姆级教程:手把手教你在本地部署自己私有化大模型!

给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

2025-06-05 11:51:21 694

原创 “AI过时了,现在都在投Agent”

很多人对Agent的理解都是,知道,又不完全知道。所以这个被资本热捧的Agent到底是什么?“Agent”(智能代理)是人工智能和计算机科学领域的一个重要概念,它指的是一种能够自主感知环境并做出决策以实现特定目标的软件或系统。Agent可以根据其设计和应用场景,具有不同的功能和特性。Agent通常被定义为一个能够感知环境并通过执行动作来影响环境的实体。它具有自主性、社会能力、反应性和主动性等基本特征。自主性意味着Agent能够独立运行,无需外部干预即可做出决策。

2025-06-04 12:06:37 702

原创 一文搞懂多模态视觉-语言模型:Qwen2.5-VL

这背后的原因是什么?因为*现在的多模态视觉-语言模型(例如:Qwen2.5-VL)能很好地把图像和文字关联起来,图像直观且包含的信息量大,再加上模型经过大量图文数据的训练,还针对图像任务进行了优化,这正好符合咱们人类更习惯通过看图来理解的认知特点。*多模态视觉-语言模型*****

2025-06-04 11:58:38 1022

原创 AI|大模型入门(四):检索增强生成(RAG)

检索增强生成(Retrieval-Augmented Generation,RAG)是指对大型语言模型输出进行优化,使其能够在生成响应之前引用训练数据来源之外的权威知识库。大型语言模型(LLM)用海量数据进行训练,使用数十亿个参数为回答问题、翻译语言和完成句子等任务生成原始输出。在LLM本就强大的功能基础上,RAG将其扩展为能访问特定领域或组织的内部知识库,所有这些都无需重新训练模型。这是一种经济高效地改进LLM输出的方法,让它在各种情境下都能保持相关性、准确性和实用性。

2025-06-03 21:53:08 1025

原创 浙江大学:AI大模型如何破局传统医疗|附48页文件下载

本文提供完整版报告下载,请查看文后提示。

2025-05-30 09:45:00 725

原创 带你了解三种大模型的应用技术范式: Prompt、Agent、 RAG

大模型(LLM,Large Language model)是基于大量数据进行预训练的超大型深度学习模型。从2019年发展到现在,其能力已经得到了极大的提升,其中以OpenAI ChatGPT的发布为关键里程碑事件。技术上的突破致使基于大模型的应用层出不穷,诸如Chatgpt, 文心一言, ChatDoc, ChatPPT等。应用虽多,但是技术范式却不外乎提示词工程、Agent和RAG三种。是指在与LLM交互时,精心设计和优化输入(即提示词或问题)的过程,以获得更准确、更有用或更具创造性的回答。

2025-05-30 08:30:00 823

原创 一文带你速通RAG、知识库和LLM!

定制知识库是指一系列紧密关联且始终保持更新的知识集合,它构成了 RAG 的核心基础。这个知识库可以表现为一个结构化的数据库形态(比如:MySQL),也可以表现为一套非结构化的文档体系(比如:文件、图图片、音频、视频等),甚至可能是两者兼具的综合形式。

2025-05-28 11:27:32 579

原创 大模型入门到精通:概念解析与应用案例全览,一文掌握AI大模型落地实践!

这个大家应该都听说过,训练大模型,需要大量的GPU算卡资源。而且,每次训练,都需要很长的时间。根据公开的数据显示,训练GPT-3大约需要3640PFLOP·天(PetaFLOP·Days)。如果采用512张英伟达的A100 GPU(单卡算力195 TFLOPS),大约需要1个月的时间。训练过程中,有时候还会出现中断,实际时间会更长。总而言之,大模型就是一个虚拟的庞然大物,架构复杂、参数庞大、依赖海量数据,且非常烧钱。相比之下,参数较少(百万级以下)、层数较浅的模型,是小模型。

2025-05-28 10:56:32 701

原创 一文搞懂大模型的蒸馏(Distillation)

一、准备阶段******如何选择教师模型与学生模型**?*******如何**构建蒸馏数据集*****(1)数学推理:meta-math/GSM8K_zh*(中文数学题)********(2)通用问答:m-a-p/COIG-CQIA*(逻辑推理、生活场景)****(3)代码生成:HuggingFace BigCode*(编程问题与解决方案)********(4)科学知识:Haijian/Advanced-Math*(高阶数学证明)***

2025-05-27 19:07:09 1042

原创 0代码,5分钟,搭建出企业级文档处理MCP Agent

文档质量决定了大模型理解的上限。当你正在构建知识库或者搭建文档审核相关的Agent,可以考虑将TextIn MCP Server嵌入到你的搭建工作流中,成为你的文档处理引擎。

2025-05-27 18:06:01 571

原创 如何管理和调度Dify工作流?

概述Dify[1]是一款开源的大模型应用开发平台,可以通过可视化的画布拖拖拽拽快速构建AI Agent/工作流。Agent通常指能够自主决策、动态响应的智能体,比如聊天机器人、自动化客服等。工作流适合结构化、步骤明确、对输出内容和格式要求非常严谨的场景。本篇文章将介绍如何通过任务调度系统调度Dify工作流。开源Dify的痛点Dify专注于做大模型应用的开发和运行平台,不支持工作流的定时调度和监控报警。

2025-05-24 11:46:01 635

原创 最强编码模型Claude 4!7小时不间断写代码,连玩24小时宝可梦,GitHub已选为Copilot底层模型

功能,使用较小的模型来浓缩冗长的思考过程。不过只有大约 5%的情况下需要这种总结,大多数思维过程都很短,足以完整显示。内存能力方面,Claude Opus 4显著超越之前所有的模型。当开发者构建允许 Claude 访问本地文件的应用程序时,Opus 4 能够熟练地创建和维护“内存文件”来存储关键信息,以帮助改进游戏体验。这能够提升代理在长期任务中的感知能力、连贯性和执行性能——例如,Opus 4在玩宝可梦时能够创建“导航指南”。

2025-05-23 11:53:03 854

原创 超越OpenAI、拿下全球双料第一,“AI吴彦祖”背后大模型SOTA了!

超拟人个性化多样性首先,在最关键的“超拟人”方面,Speech-02的还原度不说是100%,也几乎是天衣无缝了。比如这段脱口秀,无论是中文咬字还是英文发音,都非常完美。同时还带有自然的情绪起伏、停顿和重音,给人以更丰富的听觉感受。,时长00:17其次在个性化方面,Speech-02现在已经提供了丰富音色可供选择。细分维度包括语言、口音、性别和年龄。目前已经支持32种语言。中英文这样常用的选项里,还包含不同的口音。同时,它也支持对任意音色进行复刻。

2025-05-16 14:58:29 1007

原创 今天起全员免费!GPT-4.1上线ChatGPT,首波实测:又快又听话,油腻感没了

今天凌晨开始,了!而且是那种~官方介绍,GPT-4.1是一款专门针对编码任务和指令执行的模型,推理效率非常高。看看这张网友们自制的表格,它的能力一目了然:这家伙一个月前被OpenAI公开,当时声明专供API使用。但等等党终究迎来胜利——GPT-4.1的负责人Michelle Pokrass表示:我们最初真的计划只把这个模型开放给API,但你们都希望它能出现在ChatGPT里: )现在,Plus、Pro、团队用户可以在模型选择处下拉,选择使用GPT-4.1;

2025-05-16 11:49:17 1103

原创 新书速递|一口气上新 10 本!计算机重磅新作强势来袭!

二季度图灵新书接踵而至,大模型领域的重磅好书即将登场!无论你是追求理论深度,还是渴望快速上手实战,这些即将上市的新书都会成为你大模型之路上的得力助手。准备好一探究竟了吗?今天,这份书讯分为两个部分:✨重磅新作,即将上市:这 3 本书内容硬核,获得全网关注,值得提前锁定;🔥畅销新作,持续热卖:这 7 本书口碑极佳,销量持续飙升,不容错过!立即关注,跟随这些大模型新书一起快速成长吧!《图解大模型:生成式AI原理与实战》[沙特] 杰伊·阿拉马尔,[荷] 马尔滕·格鲁滕多斯特 | 著李博杰 | 译。

2025-05-15 15:11:23 732

原创 100个DeepSeek大模型中标项目,透露出7个关键洞察

今年春节期间,DeepSeek R1模型的突然走红,成为行业的一大变量。它带来了上下游产业链的联动,各种DeepSeek一体机如雨后春笋,也触发了更多机构开始体验大模型。2025年年初至今,智能超参数从公开渠道统计到100个跟DeepSeek相关的大模型中标项目。本文以此数据为基准,来刻画分析DeepSeek在大模型招投标市场的影响。

2025-05-15 11:51:12 638

原创 拆解、对比与优化:LLM工具智能体的五种任务规划与执行模式

大语言模型(LLM)驱动的 AI 智能体,特别是在借助Tools(工具)来完成复杂任务执行的过程中展现出了巨大的潜力。然而,让智能体能够合理规划任务步骤与执行、避免盲目行动是确保其高效可靠完成目标的关键。本篇将探讨多种。

2025-05-14 11:23:25 722

原创 企业级私有知识库构建全流程实战:从RAG原理到Web部署

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓CSDN粉丝独家福利这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码点击下方CSDN官方认证链接免费领取【保证100%免费】

2025-05-14 11:19:43 852

原创 从零开始学 Dify- RAG 知识库系统设计详解

RAG 知识系统遵循三阶段提取-转换-加载 (ETL) 流程进行文档处理,并结合复杂的检索机制进行知识访问。

2025-05-14 11:17:09 924

原创 MedChain:通过交互式顺序基准测试桥接大模型Agent与临床实践之间的差距

临床决策制定(CDM)是一个复杂、动态的过程,对医疗保健交付至关重要,然而对于人工智能系统而言仍是一个重大挑战。尽管基于大型语言模型(LLM)的代理已经在使用许可考试和知识问答任务的一般医学知识上进行了测试,但由于缺乏反映实际医疗实践的综合测试数据集,它们在现实世界场景中的CDM表现有限。为了弥补这一差距,我们提出了MedChain,一个包含12,163个临床案例的数据集,涵盖临床工作流程的五个关键阶段。MedChain以三个关键特征区别于现有基准测试,即现实世界临床实践的个人化、交互性和顺序性。

2025-05-13 14:00:00 689

原创 GPT-4o, GPT-4.5, GPT-4.1, O3, O4-mini等OpenAI模型的区别与联系

好了,看到这里,相信你对OpenAI的这些模型已经有了更清晰的认识。没有哪个模型是万能的,关键在于根据你的具体需求和场景进行选择。对于开发者而言,将AI模型融入日常编程流程,可以极大地提升效率。以下是一套基于OpenAI模型的。

2025-05-13 07:45:00 1926

原创 大模型新手必看!100个基础知识点全在这

从智能对话到图像生成,从文本创作到数据分析,大模型的应用场景无处不在。然而,对于初入大模型领域的小白来说,面对众多的专业术语和复杂的概念,可能会感到无从下手。别担心,本文为你整理了大模型基础知识点近100个名词解释,助你轻松开启大模型的学习之旅!基于海量文本数据训练的深度学习模型,如GPT系列、BERT等,能够理解和生成自然语言文本,完成复杂对话、文本创作等任务。想象一下,你和一个学识渊博的智者对话,他能理解你的问题并给出精彩的回答,LLM就是这样的存在。

2025-05-12 17:30:00 2568

原创 基于LLM的混合专家交易框架

近年来,深度学习和大语言模型(LLMs)的快速发展为股票投资领域应用专家混合模型(MoE)机制铺平了道路。尽管这些模型在交易表现方面展现出巨大潜力,但它们通常是单模态的,忽视了其他模态(如文本数据)中蕴含的丰富信息。此外,传统的基于神经网络的路由选择机制未能充分考虑上下文和现实世界的细微差别,导致专家选择效果不佳。为解决这些问题,本文提出了一种名为LLMoE的新框架,该框架采用大语言模型作为MoE架构中的路由机制。

2025-05-12 07:15:00 675

原创 DeepSeek+Coze实战:从0到1打造对标账号监控智能体(万字图文)

对标账号监控是一种竞品分析方法,主要用于跟踪和分析对标账号在短视频平台上的内容表现。内容采集:实时采集竞争对手发布的内容、发布频率和内容主题趋势洞察:发现竞争对手内容中的热门主题通过对标账号监控,我们能及时掌握行业动态和竞争对手动向,发掘新的选题机会,从而优化内容策略和运营方向。通过本文,我们学习了如何构建一个对标账号监控智能体,它可以帮助我们自动收集和分析竞争对手的短视频数据。让我们回顾一下关键要点。对标账号监控帮助我们了解竞争对手动向,及时调整自己的内容策略。

2025-05-09 11:54:35 1030

原创 MCP-Client保姆级入门教程

MCP-Client是(模型上下文协议)架构中的一个重要组件,用于连接AI模型(如ClaudeGPT等大型语言模型)与外部数据源、工具和服务的桥梁。是由Anthropic公司在2024年底首次提出并开源的一种开放标准协议,旨在解决大语言模型(LLM)与外部世界的连接问题。这一协议的核心价值在于打破了AI模型的"信息孤岛"限制,使模型能够以标准化的方式访问和处理实时数据,显著扩展了大模型的应用场景。在MCPServerAPIMCPClientAIMCPAIHostLLMClaudeCursor IDE。

2025-05-09 11:37:42 719

原创 大模型入门指南 - Quantization:小白也能看懂的“模型量化”全解析

模型量化是一种****参数压缩与加速技术****,其核心逻辑是将模型中的****高精度浮点数(如32位浮点数 FP32)****转换为****低精度整数(如8位整数 INT8 或4位整数 INT4)****,从而减少存储空间、提升推理速度并降低硬件能耗。***模型*量化*的本质*是通过***数学映射***,在***精度损失可控***的前提下,*将模型参数从“高精度”转换为“低精度”*,实现***性能与效率的平衡*****1. 确定量化范围**min=-1.2max=5.6。

2025-05-08 13:37:26 1104

原创 AgentClinic:模拟临床医疗环境的多模态大模型智能体评估基准

在临床场景中评估大型语言模型(LLM)对于评估其潜在的临床效用至关重要。现有的基准测试主要依赖于静态问答,这不能准确描述临床决策的复杂性和顺序性。在这里,我们介绍AgentClinic,一个用于评估模拟临床环境中LLM的多模态代理基准测试,其中包括患者互动、在不完整信息下进行的多模态数据收集,以及各种工具的使用,从而在九个医学专业和七种语言中进行深入评估。我们发现,在AgentClinic的顺序决策格式中解决MedQA问题要困难得多,导致诊断准确率可能降至原始准确率的十分之一以下。

2025-05-08 11:22:39 645

原创 大模型监督微调SFT—实战技巧和debug思路

除此之外,训练目的也不一样。pretrain 是在背书,纯粹的学习知识;sft 则是在做题,学习的是指令 follow 能力。切勿在 sft 阶段强行给模型做知识注入,比如训个 50W 条的 code 数据,所有的知识注入工作应该采用 continue-pretrain 的思路进行,否则都会使得模型的通用能力掉点明显(SFT 做知识注入基本上是 100% 某个知识,但 continue-pretrain 做知识注入会控制在 10% ~ 20% 左右的比例)。

2025-05-06 11:36:51 777

原创 从零开始的DeepSeek微调训练实战(SFT)

前言本文重点介绍使用微调框架unsloth,围绕DeepSeek R1 Distill 7B模型进行高效微调,并介绍用于推理大模型高效微调的COT数据集的创建和使用方法,并在一个medical-o1-reasoning-SFT数据集上完成高效微调实战,并最终达到问答风格优化&知识灌注目的。你能收获什么:亲手完成DeepSeek R1蒸馏模型的微调实战对模型微调、推理数据集等知识有一定了解对大模型运行的机制和原理有一定的了解有机会制作一个属于自己的定制化大模型。

2025-05-06 11:35:07 1560

原创 HyperGraphRAG:基于超图结构知识表示的新版GraphRAG - 北邮、安贞医院等

标准的基于块检索增强生成(RAG)方法将知识表示为图以利用实体间的关系,而GraphRAG结构则利用图来表示知识。然而,以往的GraphRAG方法受限于二元关系:图中的一条边仅连接两个实体,这无法很好地模拟现实中广泛存在的多个实体之间的n元关系。为了解决这一限制,我们提出了HyperGraphRAG,一种基于超图的新型RAG方法,通过超边表示n元关系事实,模拟现实世界中的复杂n元关系。为了在超图上检索和生成,我们引入了一个完整的流程,包括超图构建方法、超图检索策略以及超图引导的生成机制。

2025-04-18 11:16:57 1221

原创 文档分割模块优化策略梳理

RAG 在回答问题时经常遇到许多挑战。这篇博客中,将深入探讨提升 RAG 性能的解决方案,提升RAG效果。选择合适的 chunk_size 是一个关键决策,可以从多个方面影响 RAG 系统的效率和准确性:相较小的 chunk_size,如 128,会产生更细粒度的块。然而,这种粒度存在风险:如果 similarity_top_k 设置像 2 这样严格,重要信息可能不会出现在检索到的顶部块中。相反,512 的块大小可能会在顶部块中包含所有必要的信息,确保查询的答案随时可用。

2025-04-15 12:01:30 997

原创 OpenAI放大招!GPT-4.1到底强在哪?看完这篇你就明白了

如果你没时间看完全场发布会,只记住这一句也行:GPT-4.1支持。

2025-04-15 12:00:25 1148

原创 【Dify+deepseek+MCP】从入门到精通,手把手教你效率开挂(三)

经过前两期的铺垫,今天我们开始正式进入MCP的实战——。\1. “怎么让dify具备MCP客户端和服务器的能力?\2. “如何配置外部MCP服务?”如高德地图,Zapier服务\3. “怎么零代码搭建MCP智能体?​在Dify社区里,开发者们在插件市场大展身手,精心打造出多款超实用的 MCP插件,让 Dify 拥有了神奇的 “智能连接魔杖”。通过插件能力,轻轻松松就能把外部强大的 MCP 服务,无缝接入到自己的 Agent 应用或工作流中,给 AI 助手装上超级外挂!

2025-04-12 11:10:32 3417

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除