200731
本篇是学习信息论的入门笔记,希望能与各位分享进步!这是第三章:随机过程的熵率~
3. 随机过程的熵率
3.1 马尔科夫链
本章马尔可夫链基础知识略过。
-
本章内容表明:熵 H ( X 1 , X 2 , … X n ) H(X_1, X_2, …X_n) H(X1,X2,…Xn)随 n n n以速率 H ( X ) H(\mathcal{X}) H(X)(渐近地)线性增加,这个速率称为熵率。
-
信源:
-
离散无记忆信源(简单):各符号之间相互独立,各个符号的出现概率是它自身的先验概率 。
-
一般平稳信源(复杂):联合密度函数与时间起点无关。
-
马尔科夫信源:信源发出源字的概率,仅与当前源字及前有限个源字有关。
-
-
定义3.1.1 信源联合概率分布与时间起点无关:
p ( x 1 , x 2 , ⋯ , x n ) = p ( x 1 + 1 , x 2 + 1 , ⋯ , x n + 1 ) p\left(x_{1}, x_{2}, \cdots, x_{n}\right)=p\left(x_{1+1}, x_{2+1}, \cdots, x_{n+1}\right) p(x1,x2,⋯,xn)=p(x1+1,x2+1,⋯,xn+1)
则称该随机过程是平稳的。实际的信源短时间内是平稳的。本章主要研究时不变马尔科夫链。称 { a 1 , a 2 , . . . , a K } \{a_1,a_2,...,a_K\} { a1,a2,...,aK}为源字X。 x 1 x 2 . . . x n x_1x_2...x_n x1x2...xn为输出序列。输出概率由自身和前 l l l个源码有关, l l l个源字组成的状态组成信源状态序列 s 1 , s 2 , . . . , s m s_1,s_2,...,s_m s1,s2,...,sm。 -
相关概念:
-
过渡态:能到达其它某一状态,但不能返回;
-
吸收态:不能到达其它任何状态;
-
常返:经有限步迟早要返回该状态;
-
周期性:常返态中, q i i ( n ) q_{ii}(n) qii(n),仅当 n n n能被某整数 d d d整除时返回,周期性返回;
-
非周期:所有 n n n的最大公约数为1;
-
遍历:非周期常返;
-
闭集:子集内状态不能达到子集外;
-
不可约:最小闭集。
-
-
定义3.1.2(各态历经信源):各个状态都是遍历态(非周期常返)。
- 各态历经判定:对任意两个状态 i i i和 j j j,如果存在正整数 n 0