【计算机科学与技术】信息论笔记(3):随机过程的熵率

本文介绍了随机过程的熵率,重点讲解了马尔科夫链的概念,包括平稳马尔科夫链、各态历经信源、熵率的定义及其性质。讨论了熵率的存在性、单调性和Cesaro值定理,并提到了隐马尔可夫模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

200731本篇是学习信息论的入门笔记,希望能与各位分享进步!这是第三章:随机过程的熵率~

3. 随机过程的熵率

3.1 马尔科夫链

本章马尔可夫链基础知识略过。

  • 本章内容表明:熵 H ( X 1 , X 2 , … X n ) H(X_1, X_2, …X_n) H(X1,X2,Xn) n n n以速率 H ( X ) H(\mathcal{X}) H(X)(渐近地)线性增加,这个速率称为熵率

  • 信源:

    • 离散无记忆信源(简单):各符号之间相互独立,各个符号的出现概率是它自身的先验概率 。

    • 一般平稳信源(复杂):联合密度函数与时间起点无关。

    • 马尔科夫信源:信源发出源字的概率,仅与当前源字及前有限个源字有关。

  • 定义3.1.1 信源联合概率分布与时间起点无关:
    p ( x 1 , x 2 , ⋯   , x n ) = p ( x 1 + 1 , x 2 + 1 , ⋯   , x n + 1 ) p\left(x_{1}, x_{2}, \cdots, x_{n}\right)=p\left(x_{1+1}, x_{2+1}, \cdots, x_{n+1}\right) p(x1,x2,,xn)=p(x1+1,x2+1,,xn+1)
    则称该随机过程是平稳的。实际的信源短时间内是平稳的。本章主要研究时不变马尔科夫链。称 { a 1 , a 2 , . . . , a K } \{a_1,a_2,...,a_K\} { a1,a2,...,aK}为源字X。 x 1 x 2 . . . x n x_1x_2...x_n x1x2...xn为输出序列。输出概率由自身和前 l l l个源码有关, l l l个源字组成的状态组成信源状态序列 s 1 , s 2 , . . . , s m s_1,s_2,...,s_m s1,s2,...,sm

  • 相关概念:

    • 过渡态:能到达其它某一状态,但不能返回;

    • 吸收态:不能到达其它任何状态;

    • 常返:经有限步迟早要返回该状态;

    • 周期性:常返态中, q i i ( n ) q_{ii}(n) qii(n),仅当 n n n能被某整数 d d d整除时返回,周期性返回;

    • 非周期:所有 n n n的最大公约数为1;

    • 遍历:非周期常返;

    • 闭集:子集内状态不能达到子集外;

    • 不可约:最小闭集。

  • 定义3.1.2(各态历经信源):各个状态都是遍历态(非周期常返)。

    • 各态历经判定:对任意两个状态 i i i j j j,如果存在正整数 n 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值