研究背景
在上一章中,讨论了使用混合聚类分析对流域进行区域化。混合聚类分析是一种硬聚类方法。在硬聚类的区域化中,集水区被分类为属于或不属于一个聚类。实际上,大多数集水区与几个聚类有部分相似性。因此,不能完全证明将一个集水区分配给一个聚类而不是另一个。相比之下,模糊聚类允许一个集水区在所有聚类中具有部分或分布的成员资格。换句话说,在模糊聚类中,一个集水区可以同时属于一个以上的聚类。因此,它导致识别出具有模糊边界的聚类,与硬聚类中具有明确定义边界的清晰聚类相反。因此,本章讨论的模糊聚类方法用于区域化,预计比硬聚类提供更多信息,因为它更好地描述了现实。
研究主旨
该章节深入探讨了模糊聚类分析在流域区域化中的应用,对比硬聚类,模糊聚类允许数据点在多个聚类间拥有不同程度的隶属度,这更符合现实中数据的复杂性和不确定性,能够生成边界模糊的聚类,从而更准确地反映集水区间的相似性和差异性。模糊聚类基于模糊集理论,允许数据向量同时属于多个聚类,每个聚类的隶属度在0到1之间,这种方法能更好地处理数据与聚类之间的部分相似性,尤其适用于流域划分等需要考虑多因素影响的场景。