研究背景
本章研究的是复半单李代数g的线性表示。我们选择一个Cartan子代数和相应的根系。我们关注具有“最高权”的不可约g模,并特别关注那些是有限维的模。
研究主旨
论文探讨了半单李代数的线性表示理论,重点在于不可约模的结构。它定义了权重和初等元,证明了包含初等元的不可约模的性质,如它们的权重形式和模的不可分解性。此外,论文还讨论了具有最高权的不可约模的存在性和唯一性,以及如何通过最高权来表征有限维不可约模。
研究特点
在本章中,我们研究复半单李代数的不可约模,特别是那些具有“最高权”的模,并特别关注有限维的情况。我们引入了权重、初等元的概念,并讨论了它们在模结构中的作用。