YOLOv5-4.0 源代码导读-持续更新

已标记关键词 清除标记
<p> 需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》, </p> <p> 课程链接 https://edu.csdn.net/course/detail/29865 </p> <h3> <span style="color:#3598db;">【为什么要学习这门课】</span> </h3> <p> <span>Linux</span>创始人<span>Linus Torvalds</span>有一句名言:<span>Talk is cheap. Show me the code. </span><strong><span style="color:#ba372a;">冗谈不够,放码过来!</span></strong> </p> <p> <span> </span>代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。 </p> <p> YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。 </p> <p> YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。 </p> <h3> <span style="color:#3598db;">【课程内容与收获】</span> </h3> <p> 本课程将解析YOLOv4的实现原理和源码,具体内容包括: </p> <p> - YOLOv4目标检测原理<br /> - 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算<br /> - 代码阅读工具及方法<br /> - 深度学习计算的利器:BLAS和GEMM<br /> - GPU的CUDA编程方法及在darknet的应用<br /> - YOLOv4的程序流程 </p> <p> - YOLOv4各层及关键技术的源码解析 </p> <p> 本课程将提供注释后的darknet的源码程序文件。 </p> <h3> <strong><span style="color:#3598db;">【相关课程】</span></strong> </h3> <p> 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括: </p> <p> 《YOLOv4目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4-tiny目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4目标检测实战:人脸口罩佩戴检测》<br /> 《YOLOv4目标检测实战:中国交通标志识别》 </p> <p> 建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。 </p> <h3> <span style="color:#3598db;">【YOLOv4网络模型架构图】</span> </h3> <p> 下图由白勇老师绘制 </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006291526195469.jpg" /> </p> <p>   </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007011518185782.jpg" /> </p>
相关推荐
<p class="MsoNormal" style="text-align:left;background:white;" align="left"> <span style="font-size:13.5pt;font-family:'微软雅黑',sans-serif;color:#3598db;">【为什么要学习这门课】</span> </p> <p class="MsoNormal" style="text-align:left;background:white;" align="left"> <span style="font-family:'微软雅黑',sans-serif;color:#222226;">Linux</span><span style="font-family:'微软雅黑',sans-serif;color:#222226;">创始人<span>Linus Torvalds</span>有一句名言:<span>Talk is cheap. Show me the code. </span></span><span style="font-family:微软雅黑, sans-serif;color:#e03e2d;background-color:#ffffff;">冗谈不够,放码过来!</span><span style="font-family:'微软雅黑',sans-serif;color:#222226;">代码阅读是从基础到提高的必由之路。 </span> </p> <p class="MsoNormal" style="text-align:left;background:white;" align="left"> <span style="font-family:'微软雅黑',sans-serif;color:#222226;">YOLOv5</span><span style="font-family:'微软雅黑',sans-serif;color:#222226;">是最近推出的轻量且高性能的实时目标检测方法。<span>YOLOv5</span>使用<span>PyTorch</span>实现,含有很多业界前沿和常用的技巧,可以作为很好的代码阅读案例,让我们深入探究其实现原理,其中不少知识点的代码可以作为相关项目的借鉴。</span> </p> <p class="MsoNormal" style="text-align:left;background:white;" align="left"> <span style="font-size:13.5pt;font-family:'微软雅黑',sans-serif;color:#3598db;">【课程内容与收获】</span> </p> <p class="MsoNormal" style="text-align:left;background:white;" align="left"> <span style="font-family:'微软雅黑',sans-serif;color:#222226;">本课程将详细解析<span>YOLOv5</span>的实现原理和源码,对关键代码使用<span>PyCharm</span>的<span>debug</span>模式逐行分析解读。 本课程将提供注释后的<span>YOLOv5</span>的源码程序文件。</span> </p> <p class="MsoNormal" style="text-align:left;background:white;" align="left"> <span style="font-family:'微软雅黑',sans-serif;color:#222226;"> <img src="https://img-bss.csdnimg.cn/202012061533559839.jpg" alt="课程内容" /></span> </p> <p class="MsoNormal" style="text-align:left;background:white;" align="left"> <span style="font-size:13.5pt;font-family:'微软雅黑',sans-serif;color:#3598db;">【相关课程】</span> </p> <p style="margin-left:0cm;"> 本人推出了有关YOLOv5目标检测的系列课程。请持续关注该系列的其它视频课程,包括: </p> <p> 《YOLOv5(PyTorch)目标检测实战:训练自己的数据集》 </p> <p> Ubuntu系统 <strong><a href="https://edu.csdn.net/course/detail/30793"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30793</span></a></strong> </p> <p> Windows系统 <strong><a href="https://edu.csdn.net/course/detail/30923"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/30923</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测:原理与源码解析》<strong><a href="https://edu.csdn.net/course/detail/31428"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31428</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:Flask Web部署》<strong><a href="https://edu.csdn.net/course/detail/31087"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/31087</span></a></strong> </p> <p> 《YOLOv5(PyTorch)目标检测实战:TensorRT加速部署》<strong><a href="https://edu.csdn.net/course/detail/32303"><span style="color:#7c79e5;">https://edu.csdn.net/course/detail/32303</span></a></strong> </p>
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页