- 博客(67)
- 收藏
- 关注
原创 V7.0 学会文件管理
在研究生期间,或多或少都要参与到一些非自己论文的工作任务中,可能这些工作内容发给老师后就再也用不到了,也可能几年后临近毕业突然要你曾经做过的某一个文档,因此做好文件管理也是非常重要的!教师文件夹就根据导师给的任务自己去每次有任务以任务名创建子文件夹,最好把时间也标注一下,下面是一个例子。论文文件夹下一般还要有几个文件夹-研究方向_英文;这里建议在非C盘建立至少两个文件夹-论文&教师。
2025-05-28 13:16:45
134
原创 V6.0 研究生如何用好语言大模型
但它们终究只是“工具”,离不开我们的“操控”。但是现在的语言大模型又叫做通用型自然语言处理,在一些专业的方向上没办法给出很好的解释,尤其是在文章编写的角度上,AI给你的回答往往只是片面的,广泛的,并没有从一个角度切入问题本身,而论文主要是研究某一个方向上的一个点,所以语言大模型在内容编写上往往都会出现—逻辑不清楚,内容只有广度没有深度。AI幻觉可以理解为在胡编乱造,尤其你是对一个方向不太了解,他明明给你的内容都是编的,但是你就觉得是真的(尤其是你让他写一段内容,让他去参考真实的论文,给的论文几乎都是编的)
2025-05-28 00:30:05
494
原创 V5.0 研究生代码篇-代码编写规范和版本管理(强烈推荐)
同理,在编写代码的时候,里面的变量名/方法/类名等等也不要a,b,c这种,也不要用中文的拼音缩写,如tupian1,zhanghumiuma这样,如果你的英文不好,可以去百度搜一下图片-image,用户名-userName这样。一个好的代码其功能至关重要,其注释是否清晰也是一样的重要。你可能今天对代码的某个部分进行了修改,你需要做对比实验的时候也要对同部分进行修改,如果没有一个好的版本管理,在后续的任务重需要进行大量的重复性工作,这里推荐一个大多数公司都在用用的版本控制系统-Git。
2025-05-27 23:17:29
378
原创 v4.0 论文投稿-Latex论文投稿&注意事项
一开始上传图片都是直接拖拽到论文中位置,代码也会自动生成,但是此时图片的位置就是完全随机的,这里可以参考下面的内容对图片的标题和位置进行编辑。但是鄙人可能水平比较低,被拒绝的有点多,在投稿某期刊的时候给的模板竟然一直不显示,而且参考论文在bib中也必须按照顺序排列,不然就会出现引用不到的情况,我这里找了好久,是通过下面的方法进行解决的。在论文中,图表最能显示研究内容,因此一个好看的表格在论文中也是至关重要的。通过此代码,就可以将(5)的公式在Latex中进行显示,这里面的(*)会根据你的公式进行自动排序。
2025-05-27 22:44:22
537
原创 v3.0 YOLO篇-如何通过YOLO进行实验
随着版本迭代(从YOLOv1到YOLO12),YOLO不断在网络结构、特征提取和损失函数等方面进行优化,兼顾了检测精度和推理效率,已成为目标检测领域中广泛使用且极具代表性的深度学习模型。在YOLO实验中,通常要对比v5-最新版本以及FastRcnn和SSD,下面我分享了比较好的博客和视频教程。其实YOLO大多数的版本运行方式都是类似的,这里只要能够运行/修改好一个版本的YOLO,在。,目标检测需要兼顾“在哪儿”(定位)和“是什么”(分类)两方面的能力,因而更具挑战性。,旨在从图像或视频中同时。
2025-05-22 18:29:39
629
原创 YOLO篇-3.1.YOLO服务器运行
在对应的文件夹在上传对应的图片信息(images labels的train test val都要分别上传,而且不要点错!进入网站,租用自己的服务器,租用好后点击jupyter。在images和labels两个文件夹下分别创建train val test。训练完后记得把文件保存到自己的电脑,然后关机,不然收费!在工程文件下创建images和labels两个文件夹。在根目录下进入datasets创建自己的工程名。修改data.yaml内容(复制下面内容)在ultralytics目录下,新建窗口。
2025-05-22 18:19:44
187
原创 技术篇-2.5.Matlab应用场景及开发工具安装
Matlab 在数学建模和数值分析等领域具有无可替代的地位。它几乎涵盖所有常见数学算法的内置函数库,使得从数据预处理、方程求解到优化算法的实现,无需编写大量底层代码即可快速完成;同时,Matlab 强大的可视化能力,可以用简洁的几行命令生成高质量的二维、三维图形和动画,使得实验结果展示和交互式探索更加直观易懂。此外,配合丰富的专业工具箱(如优化工具箱、信号处理工具箱、控制系统工具箱等),Matlab 能够支持大规模数值仿真与参数敏感性分析。
2025-05-22 17:27:07
433
原创 技术篇-2.4.Python应用场景及开发工具安装
在其他的编程语言中,我只是简单的介绍了应用场景、注意事项、环境安装和推荐开发工具,在Python这篇中,我将额外讲解几个常用的Python包的下载。Anaconda可以简单快捷的安装Python的包,并且可以创建出一个虚拟环境去运行,能够快速搭建开发环境。Python可以通过idea进行开发项目,但是在数据分析、机器学习、深度学习等中小型项目个人推荐使用。Python的应用场景非常广泛,在大多数开源代码的论文中,其编程语言都是Python.,可以结合Anaconda快速构建环境,下载所需要的包。
2025-05-22 17:11:04
243
原创 技术篇-2.3.Golang应用场景及开发工具安装
Golang 虽然语法简洁,上手也较快,但其在高并发、微服务和云原生领域的优势明显,要真正精通并灵活运用仍需积累大量实践经验。与 Java 借助重量级框架不同,Go 倾向于使用标准库和轻量级第三方包来构建高性能、低延迟的系统。Golang 的开发工具我推荐使用Visual Studio Code,并在其下安装官方Go扩展。Go的应用场景通常有:Web后端开发、微服务开发、高并发网络服务、区块链开发。
2025-05-22 16:35:51
270
原创 技术篇-2.2.JAVA应用场景及开发工具安装
Java 语言虽然对初学者而言语法相对友好,上手门槛不高,但它的生态系统庞大、应用领域广泛,要真正精通并将其灵活运用到各行各业却并非易事。与 C/C++ 更侧重于底层性能优化和系统级开发不同,Java 在实际工程中往往借助丰富的框架来提高开发效率、保证代码质量。如果你的研究方向不是必须使用JAVA,在读研期间我更加倾向于Python,但是并不代表JAVA没有Python好。在后续介绍 Java 的典型应用场景时,我会结合每个领域的特点,分别推荐最合适的框架。
2025-05-22 16:26:50
300
原创 技术篇-2.1.C\C++应用场景及开发工具安装
C\C++语言的应用常有:操作系统、驱动、嵌入式开发、游戏引擎、网络编程、桌面应用。如果你的研究方向不是非C不可,那么我并不是非常推荐学习该语言。C\C++有着复杂的语法规则,但是C\C++的环境安装要比其他语言简单的多,如果你的电脑是window系统,那么只需要下载编译工具就可以直接运行。接下来我将介绍C\C++语言的适用场景、注意事项和开发工具(Windows下)。个人这里推荐使用Visual Studio(VS)
2025-05-22 16:10:33
278
原创 v2.0 技术篇目录-研究生如何选择编程技术
在软件领域,编程语言的选择应基于其特色和应用场景,而非单纯追求语言本身。C/C++语言以其面向过程和面向对象的思想,在桌面编程和嵌入式开发中占据重要地位,尽管其语法复杂。JAVA语言以其面向对象编程理念,在中大型分布式系统和大数据开发中不可或缺。Golang语言因其编译速度快、运行效率高,在区块链和高并发项目中得到广泛应用。Python语言以其简洁的语法和丰富的开源库,在人工智能、数据科学和脚本编写中表现出色。MATLAB语言专为科学计算与工程应用设计,在数学建模、信号处理等领域具有独特优势。前端语言如HT
2025-05-22 15:49:10
526
原创 论文篇-1.5.如何进行科研绘图
在实际写作中,图表不仅是对文本的补充,更是支撑论点和展示成果的重要组成部分。绘图软件通常使用visio,因为在绘图可时图片能比较大,visio绘图的时候大的图放在文章里也是很自然的。丰富的文献积累不仅为创新提供理论支撑,也为后续的论文写作提供参考模板,使我们能够借鉴优秀论文的结构与表达方式,逐步掌握学术写作的规范。当你阅读整理了多篇论文后,自己的创新点往往来源于其中某几篇文献的启发,而论文中的图像设计也通常不会完全凭空产生。合理参考并融入自己的表达方式,不仅能提升图像质量,也有助于增强论文的整体呈现效果。
2025-05-21 12:33:20
262
原创 论文篇-1.4.一篇好的论文是改出来的
作为理科生,撰写一篇好的论文这件事并不简单。一篇论文在当今是很好而且很快就能够编写出来的,但是。,在第一次编写的时候可能更注重整体而忽略了局部内容,第二次修改后可能上下逻辑不贯穿...因此一定要做好。当你实验做完满心欢喜开始编写论文后,一定不要高兴过早,一篇论文在初稿完成后至少还要。,结论部分无需面面俱到,应对各个部分进行提炼,突出研究难点和研究结论价值,如果可以,还可以。标题后面不是摘要么,怎么直接引言了。实验部分通常按照大多数同行业的论文进行实验,验证所提出的方法,,而不要把过于基础的内容反复提及。
2025-05-21 12:30:27
332
原创 论文篇-1.3.如何整理一篇论文
随着你阅读整理的论文越来越多,大多数论文的核心都是万变不离其宗,在累计到一定后,一个个新颖的、可行的创新点就会涌现在脑海中,接下来就是按照大多数论文类似的实验验证创新点可行性和性能,整理好实验数据后就是进行编写论文。然后把平时阅读的论文,进行一个简单的整理,这里引用txt和引用bib则是在论文下载网站上通常有一个cite,点进去有。在研究生生涯中,读的少的也要读六七十篇,读得多的话可能要几百篇。,所以在日常的阅读论文中,有一个。,其中精读的就要占到至少一半,的过程能够在编写论文的时候做到。
2025-05-21 12:24:20
169
原创 论文篇-1.2.如何读好一篇论文
在整个研究生生涯中,论文这个词贯穿始终,而论文的本质在于体现一定程度的创新性,那么创新是什么?我个人理解的创新是在一个坚实的研究基础上,提出新的方法,通过实践加以验证和完善,从而推动领域发展。,看作者在哪部分提出来好的创新点,作者是如何进行实验如何进行对比,以及绘制的图片是否在自己审美范围内。,可以将这些词记录一下,然后去网上搜索一下,简单记录一下,对于反复遇到的就要反复进行记录,记录次数多了就知道自己在研究什么内容了。出有价值的表达、关键公式,着重关心图表,以及作者的方法和别人的方法如何进行对比。
2025-05-21 12:17:47
317
原创 论文篇-1.1.如何找到一篇论文
作为期刊,则一定会有出版商,常见的出版商有IEEE、Springer、Elsevier、MDPI(几乎都是OA的)、ScienceDirect等等,出版商下面有若干期刊,不同的期刊有着不同分区和影响因子。个人建议除了顶会,不要去看或者参考会议论文,会议论文的难度较低,创新点也过时,在每个期刊查询的界面都能进行过滤,去看期刊的论文。也可以快速了解某一个方向的前沿论文,但是微信公众号的内容往往是编辑为了博取流量,内容往往只截取部分,而且并不一定是非常好的技术,所以主要看论文还是建议在上面三种方式下载。
2025-05-21 12:12:09
170
原创 v1.0 论文篇目录-研究生如何阅读编写论文
在论文篇,整理了我在读研期间对论文的一些个人理解,本篇将围绕如何找到一篇论文->如何阅读一篇论文->如何整理一篇论文->如何编写一篇论文->科研绘图进行编写,您可以通过直接点击对应的链接进入到具体内容中,希望我的经验能够对你有所帮助。如果您想联系我,请在下方评论/私聊~
2025-05-21 12:05:27
110
原创 大数据の华为云1.1-防火墙和Docker配置
购买了一台华为云的服务器,后续准备搭建一个个人大数据博客,本篇作为第一章,记录华为云的一些基础配置。确保出现这个命令,代表成功,不成功就换个镜像试试吧。3.启动Docker并设置开机自动启动。这里试了好几个,推荐用阿里云的镜像。1.2系统更新与依赖安装。1.设置Docker仓库。1.3Docker安装。这里就是还没有创建镜像。2.安装Docker。4.验证Docker。
2025-02-08 14:26:49
237
原创 docer安装hadoop
此处会看到刚刚创建好的容器,并在后台运⾏。这⾥因为是后期制作的教程,为了节省内存,只保留了。,并配置免密登录,由于后⾯的容器之间是由⼀个镜像启动的,就像同⼀个磨具出来的。查看集群启动状态 (这个状态不是固定不变的,随着应⽤不同⽽不同,但⾄少应该有。⽣成密钥,不⽤输⼊,⼀直回⻋就⾏,⽣成的密钥在当前⽤⼾根⽬录下的。其余的四条命令就是⼏乎⼀样的了,注意:启动容器后,使⽤。启动⼀个状态为退出的容器,最后⼀个参数为容器。的虚拟桥接⽹络,该虚拟⽹络内部提供了⾃动的。,退出容器状态,但仍让容器处于后台运⾏状。
2023-09-28 10:46:35
1368
原创 大数据学习-目录
4.大数据学习1.4-xShell配置Hadoop。1.大数据学习1.1-Centos8虚拟机安装。3.大数据学习1.3-xShell配置jdk。5大数据学习1.5-单机Hadoop。2.大数据学习1.2-yum配置。学习内容持续更新ing。
2023-09-18 19:27:34
492
原创 大数据学习1.5-单机Hadoop
7.修改Hadoop配置信息-5vi mapred-site.xml。4.修改Hadoop配置信息-2vi hadoop-env.sh。5.修改Hadoop配置信息-3vi hdfs-site.xml。6.修改Hadoop配置信息-4vi core-site.xml。8.修改Hadoop配置信息-3vi yarn-site.xml。16.Hadoop实战-1创建work.txt并编辑。3.修改Hadoop配置信息-1进入配置信息文件。18.Hadoop实战-4进行单词统计。13.启动hadoop。
2023-09-18 19:22:51
344
原创 大数据学习1.4-xShell配置Hadoop
3.将hadoop直接拖到xShell中。6.加载配置文件(不能再xShell中)7.为了保险起见 推荐在终端输入一次。如果出现版本则证明安装完成。1.创建hadoop目录。2.切换到hadoop中。4.解压hadoop。8.查看是否配置完成。
2023-09-18 18:29:31
1437
原创 大数据学习1.3-xShell配置jdk
(这里xShell是不能执行这条命令的 需要进入虚拟机执行)3.将jdk直接拖到xShell中。5.配置环境变量-进入环境变量文件。8.查看jdk环境变量是否完成。1.创建java文件。2.切换到java中。
2023-09-18 18:16:13
1081
原创 大数据学习1.2-yum配置
4.修改CentOS-Linux-Extras.repo的baseurl为。CentOS-Linux-AppStream.repo的baseurl为。CentOS-Linux-BaseOS.repo的baseurl为。1.输入下面命令修改yum。
2023-09-18 18:05:18
106
原创 大数据学习1.1-Centos8网络配置
2.配置网络信息 打勾处取消 记住箭头的数字。6.配置网络信息-进入修改网络配置文件。7.配置网络信息-2修改配置文件。5.将iIP和DNS进行修改。
2023-09-18 17:51:08
368
原创 大数据学习1.0-Centos8虚拟机安装
3.选择Linux的CentOS8。5.分配20g存储空间。推荐密码设置为root。2.选择稍后安装OS。10.开启虚拟机安装。
2023-09-18 17:34:27
375
原创 P14-CVPR2022-1.0-RepLKNet31
翻译我们重新审视现代卷积神经网络(CNN)中的大内核设计。受视觉变换器(ViTs)最新进展的启发,在本文中,我们证明了使用几个大卷积核而不是一堆小核可能是一个更强大的范例。我们提出了五个准则,例如:应用重新参数化的大深度卷积,设计高效的高性能大核CNN。根据指导方针,我们提出了RepLKNet,这是一种纯CNN架构,其内核大小高达31×31,而不是常用的3×3。
2023-08-25 18:53:28
898
原创 P13-CNN学习1.3-ResNet(神之一手~)
翻译深层的神经网络越来越难以训练。我们提供了一个残差学习框架用来训练那些非常深的神经网络。我们重新定义了网络的学习方式,让网络可以直接学习输入信息与输出信息的差异(即残差),而不必学习一些无关的信息。我们提供了全面的证据来说明这种残差网络更加容易进行优化,而且随着网络层数的增加,准确率也就增加。在ImageNet的数据集中,我们证实了在深度达到152层的残差网络上(相当于VGG net的8倍),网络仍然有着较低的复杂度。
2023-08-14 21:26:34
1167
原创 P12-Retentive NetWork-RetNet挑战Transformer
翻译在这项工作中,我们提出了保留网络(RETNET)作为大型语言模型的基础架构,同时实现训练并行性、低成本推理和良好性能。我们从理论上推导了循环和注意力之间的关系。然后,我们为序列建模提出了保留机制,支持三种计算范式,即并行、递归和分块递归。具体而言,并行表示允许进行训练并行性。递归表示使得低成本的O(1)推理成为可能,这提高了解码吞吐量、延迟和GPU内存,而不牺牲性能。分块递归表示有助于使用线性复杂性进行高效的长序列建模,其中每个分块在并行编码的同时递归地总结这些分块。
2023-08-14 11:50:21
1775
原创 P11-Transformer学习1.1-《Attention Is All You Need》
翻译主流的序列转换模型都是基于复杂的循环神经网络或卷积神经网络,且都包含一个encoder和一个decoder。表现最好的模型还通过attention机制把encoder和decoder联接起来。我们提出了一个新的、简单的网络架构,Transformer. 它只基于单独的attention机制,完全避免使用循环和卷积。在两个翻译任务上表明,我们的模型在质量上更好,同时具有更高的并行性,且训练所需要的时间更少。我们的模型在 WMT2014 英语-德语的翻译任务上取得了28.4的BLEU评分。
2023-08-08 15:38:04
1215
原创 Transformer1.0-预热
不是图像中所有的区域对任务的贡献都是同样重要的,只有任务相关的区域才是需要关心的,比如分类任务的主体,空间注意力模型就是寻找网络中最重要的部位进行处理。自注意力机制是注意力机制的一种,解决神经网络接收的输入是很多大小不一的向量,并且不同向量之间又一定的关系,但实际训练的时候无法发挥这些输入之间的关系导致模型训练结果效果极差(机器翻译序列到序列,语义分析等),针对全连接神经网络对于多个相关的输入无法建立起相关性问题,可以通过自注意力机制解决,实际上让机器注意到整个输入中不同部分之间的相关性。
2023-08-07 12:53:18
240
原创 YOLOv5源码解读1.7-网络架构common.py
学习了yolo.py网络模型后,今天学习common.py,common.py存放这YOLOv5网络搭建的通用模块,如果修改某一块,就要修改这个文件中对应的模块。7.注意力模块TransformerBlock。23.模型扩展模块AutoShape。24.推理模块Detections。17.幻象卷积GhostConv。5.深度可分离卷积DWConv。14.空间金字塔池化模块SPP。3.填充padautopad。10.简化的CSP瓶颈层C3。11.自注意力模块的C3TR。1.导入python包。
2023-08-01 15:40:18
1707
原创 YOLOv5源码解读1.6-网络架构yolo.py
----------------------------------3.加载自定义模块----------------------------------from models.common import * # yolov5的网络结构(yolov5)from models.experimental import * # 导入在线下载模块from utils.autoanchor import check_anchor_order # 导入检查anchors合法性的函数。
2023-07-31 22:05:44
940
原创 YOLOv5源码解读1.5-配置文件yolov5*.yaml
前面学习了detect train test三个部分的源码,接下来就是对yolov5的网络进行学习。网络结构包括yolo.py和common.py,在具体学习网络结构。yolov5中网络结构采用yaml配置文件,yolov5配置了4种模型,这篇我们以yolov5s.yaml为例来介绍其网络结构。
2023-07-31 19:53:59
394
2
原创 YOLOv5源码解读1.4-测试test.py
----------------------------------3.自定义模块----------------------------------from models.common import DetectMultiBackend # yolov5的网络结构(yolov5)from utils.callbacks import Callbacks # 和日志相关的回调函数from utils.datasets import create_dataloader # 加载数据集的函数。
2023-07-31 12:09:57
1616
1
原创 YOLOv5源码解读1.3-训练train.py
1.导入Python库2.获取文件路径3.自定义模块4.分布式训练初始化(多GPU)5.train5.1创建训练权重路径 设置模型 txt等保存路径5.2读取超参数配置文件5.3设置参数保存路径5.4加载日志信息。
2023-07-31 11:00:45
1602
原创 YOLOv5源码解读1.2-推理detect.py
----------------------------------2.定义文件路径----------------------------------"""这部分会将当前项目添加到系统路径上,以使得项目中的模块可以调用。同时将相对路径保存到ROOT中,便于寻找项目中的文件"""FILE = Path(__file__).resolve() # __file__指的是当前文件(即detect.py),FILE最终保存着当前文件的绝对路径,比如D://yolov5/detect.py。
2023-07-29 22:48:55
595
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人