在蒸汽提取系统设计中应用地下水流动模型

研究背景

最近的几个环境问题导致浅层蒸汽提取系统的使用增加。这些关注包括从垃圾填埋场产生的甲烷气体的生成和迁移,以及从石油产品和其他挥发性和半挥发性有机化合物溢出的蒸汽迁移。最有效的控制甲烷迁移的方法之一是通过蒸汽提取系统将甲烷从地面抽出。蒸汽提取系统的第二个主要应用是清理因地下油箱、管道和其他意外溢出而被挥发性和半挥发性有机化合物污染的土壤。

研究主旨

本文讨论了如何使用地下水流动模型辅助设计蒸汽提取系统,这类系统常用于控制甲烷气体迁移和处理土壤中的有机物污染。通过合理估计和定义输入参数,地下水流动模型能够有效预测蒸汽提取系统的性能,如压力降和气体提取率,这对于系统设计至关重要。

研究特点

最近在各种环境工程应用中使用了蒸汽提取系统,包括控制甲烷迁移和处理挥发性和半挥发性有机化合物溢出相关的问题。气体和蒸汽在土壤中的压力流动所遵循的微分方程是非线性的,因为气体密度取决于气体压力。但是,如果流场中任意两点之间的最大压力差小于大约0.5大气压,开发用于模拟地下水流动的微分方程能很好地近似气体传输。蒸汽提取系统通常在约0.2大气压的压力差下运行。因此,如果定义了正确的输入变量集,可以使用解析和数值地下水流动模型来模拟蒸汽和气体传输。

文章出处 在蒸汽提取系统设计中应用地下水流动模型

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值