【文献阅读】Lorentzian Linear Graph Convolutional Networks For Node Classification

Abstract

大多数现有的线性GCN模型在欧几里得空间中执行神经网络操作,并未明确捕捉到真实世界数据集中以图形式建模的树状层次结构。本文尝试将双曲空间引入线性GCN,并提出了一种新的洛伦兹线性GCN框架。

具体而言,将图节点的学习特征映射到双曲空间中,然后执行洛伦兹线性特征转换,以捕捉数据的潜在树状结构。

在标准的引用网络数据集上进行半监督学习的实验结果表明,在Citeseer数据集上实现了74.7%的准确率,在PubMed数据集上实现了81.3%的准确率。在PubMed数据集上,相比其他非线性GCN模型的训练速度可以提高两个数量级。

Introduction

在这里插入图片描述

Related Work

在这里插入图片描述

Preliminaries

Lorentz Model

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值