论文阅读:Learning to Reduce Dual-level Discrepancy for Infrared-Visible Person Re-identification (CVPR20

论文阅读:Learning to Reduce Dual-level Discrepancy for Infrared-Visible Person Re-identification (CVPR2019)


(CVPR2019))

1、针对问题
跨模态行人重识别面临可见光和红外光两种模态的巨大挑战,同时单模态中视角、光线和遮挡等问题仍然存在。文中指出,不同模态下的同一行人的距离要大于红外图像中同一行人的距离,因此,跨模态行人重识别的目标是减小跨模态同一行人的距离,增大同一模态下不同行人的距离。而以前的跨模态行人重识别主要通过约束可见光和红外图像特征来实现的,这是不够的。基于此,本文提出了一种新的Dual-level Discrepancy Reduction Learning (D2RL)方法解决跨模态问题。
跨模态类内差异与模态内类间差异对比
2、本文思想
本文提出了D2RL的方法,即两级差异减小学习方法,该方法设计两个子网络,分别为 T_I 和 T_F 。T_I 子网络对可见光图像和红外图像都进行了加强,生成新的光谱图,从而减小了可见光图像和红外图像之间不同模态的差异,然后T_F 采用传统的跨模态行人重识别方法,减小约束下的特征差异。这两个子网络以端对端的方式级联并且联合优化,这种用两级子网络分别减小跨模态的图像差异和相同图像表示下的特征差异的方法,能够很好地解决跨模态差异的问题。D2RL的结构如下图所示。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值