求距离3——distance.pdist()方法,返回距离值

与求距离2——distance.cdist()方法类似,但有区别

cdist 与pdist 区别
 distance.cdist()方法distance.pdist()方法
输入输入两个距离(X、Y),计算方法是X中的点一次与Y中的点求距离。输入一个数组点(X),里面的元素反复对比求距离(i -> i+1距离,i -> i+2距离,i -> i+3 距离…)
输出返回 X形状*Y形状的矩阵返回一个列表

求欧几里得距离 ,例题:

from scipy.spatial import distance

coords = [(1, 1),
          (2, 2),
          (3, 3),
          (4, 4)]

distance.pdist(coords, 'euclidean')

>>

array([1.41421356, 2.82842712, 4.24264069, 1.41421356, 2.82842712,
       1.41421356])

 

API : scipy.spatial.distance.pdist(Xmetric='euclidean'*args**kwargs)

参考:https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html#scipy.spatial.distance.pdist

参数:

Xndarray

An m by n array of m original observations in an n-dimensional space.

metricstr or function, optional

The distance metric to use. The distance function can be ‘braycurtis’, ‘canberra’, ‘chebyshev’, ‘cityblock’, ‘correlation’, ‘cosine’, ‘dice’, ‘euclidean’, ‘hamming’, ‘jaccard’, ‘jensenshannon’, ‘kulsinski’, ‘mahalanobis’, ‘matching’, ‘minkowski’, ‘rogerstanimoto’, ‘russellrao’, ‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’, ‘yule’.

*argstuple. Deprecated.

Additional arguments should be passed as keyword arguments

**kwargsdict, optional

Extra arguments to metric: refer to each metric documentation for a list of all possible arguments.

Some possible arguments:

p : scalar The p-norm to apply for Minkowski, weighted and unweighted. Default: 2.

w : ndarray The weight vector for metrics that support weights (e.g., Minkowski).

V : ndarray The variance vector for standardized Euclidean. Default: var(X, axis=0, ddof=1)

VI : ndarray The inverse of the covariance matrix for Mahalanobis. Default: inv(cov(X.T)).T

out : ndarray. The output array If not None, condensed distance matrix Y is stored in this array. Note: metric independent, it will become a regular keyword arg in a future scipy version

Returns

Yndarray

Returns a condensed distance matrix Y. For each i and j (where i<j<m),where m is the number of original observations. The metric dist(u=X[i], v=X[j]) is computed and stored in entry ij.

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值